Novartis acquisition validates CIRM’s impact on cystinosis treatment

Dr. Stephanie Cherqui

The future looks brighter for cystinosis patients and their families.  

As one of 7,000 rare diseases, cystinosis causes an abnormal build-up of the amino acid cystine that can lead to organ failure and premature death. With little to no treatment options, children and young adults primarily affected by the condition often have a poor prognosis – until now.  

Thanks to $17 million in early funding from the California Institute for Regenerative Medicine (CIRM) and the unwavering dedication of researchers like Dr. Stephanie Cherqui at UC San Diego (UCSD), a gene therapy to address the genetic defects of cystinosis is making its way through the field.

Cherqui’s stem cell gene therapy offers a potential breakthrough by modifying a patient’s own blood stem cells with a functional version of the defective CTNS gene to address the underlying cause of the disease.  

Last month, Novartis, a pharmaceutical company with extensive expertise in clinical-stage gene therapy and access to infrastructure, purchased the gene therapy for $87.5 million from AVROBIO. CIRM funded the preclinical work for this study, which involved completing the testing needed to apply to the Food and Drug Administration (FDA) as well as a subsequent clinical trial.  

“CIRM played a significant role in advancing the stem cell gene therapy program for cystinosis from bed-to-bedside. Through its funding and support, CIRM has allowed me to perform the pre-clinical studies required for an investigational new drug application, and then to conduct the first phase of the clinical trial in an academic setting,” said Dr. Cherqui.  

Not only will the Novartis acquisition expedite the global availability of this therapy for people with cystinosis, but it also affirms CIRM’s pivotal role in the development of early-stage research that can turn into tangible treatments. 

“The Novartis acquisition has the potential to accelerate clinical development of novel hematopoietic gene therapy for cystinosis patients. We’re excited for the cystinosis patient community as well as the UCSD, UCLA and AVROBIO teams that led this advancement,” said Dr. Shyam Patel, Senior Director of Business Development and Alliance Management at CIRM. “Furthermore, the Novartis acquisition validates CIRM’s Clinical funding model, which has supported this program since 2016 through preclinical studies as well as through the ongoing first-in-human clinical trial that was coordinated through the UCSD CIRM Alpha Clinic.” 

The impact of this acquisition goes far beyond the walls of research laboratories. For those with cystinosis, it brings a renewed sense of hope and possibility.  

Making transplants easier for kids, and charting a new approach to fighting solid tumors.

Every year California performs around 100 kidney transplants in children but, on average, around 50 of these patients will have their body reject the transplant. These children then have to undergo regular dialysis while waiting for a new organ. Even the successful transplants require a lifetime of immunosuppression medications. These medications can prevent rejection but they also increase the risk of infection, gastrointestinal disease, pancreatitis and cancer.

Dr. Alice Bertaina and her team at Stanford University were awarded $11,998,188 to test an approach that uses combined blood stem cell (HSC) and kidney transplantation with the goal to improve outcomes with kidney transplantation in children. This approach seeks to improve on the blood stem cell preparation through an immune-based purification process.

In this approach, the donor HSC are transplanted into the patient in order to prepare for the acceptance of the donor kidney once transplanted. Donor HSC give rise to cells and conditions that re-train the immune system to accept the kidney. This creates a “tolerance” to the transplanted kidney providing the opportunity to avoid long-term need for medications that suppress the immune system.

Pre-clinical data support the idea that this approach could enable the patient to stop taking any immunosuppression medications within 90 days of the surgery.

Dr. Maria T. Millan, President and CEO of CIRM, a former pediatric transplant surgeon and tolerance researcher states that “developing a way to ensure long-term success of organ transplantation by averting immune rejection while avoiding the side-effects of life-long immunosuppression medications would greatly benefit these children.”

The CIRM Board also awarded $7,141,843 to Dr. Ivan King and Tachyon Therapeutics, Inc to test a drug showing promise in blocking the proliferation of cancer stem cells in solid tumors such as colorectal and gastrointestinal cancer.

Patients with late-stage colorectal cancer are typically given chemotherapy to help stop or slow down the progression of the disease. However, even with this intervention survival rates are low, usually not more than two years.

Tachyon’s medication, called TACH101, is intended to target colorectal cancer (CRC) stem cells as well as the bulk tumor by blocking an enzyme called KDM4, which cancer stem cells need to grow and proliferate.

In the first phase of this trial Dr. King and his team will recruit patients with advanced or metastatic solid tumors to assess the safety of TACH101, and determine what is the safest maximum dose. In the second phase of the trial, patients with gastrointestinal tumors and colorectal cancer will be treated using the dose determined in the first phase, to determine how well the tumors respond to treatment.  

The CIRM Board also awarded $5,999,919 to Dr. Natalia Gomez-Ospina and her team at Stanford University for a late-stage preclinical program targeting Severe Mucopolysaccharidosis type 1, also known as Hurler syndrome. This is an inherited condition caused by a faulty gene. Children with Hurler syndrome lack an enzyme that the body needs to digest sugar. As a result, undigested sugar molecules build up in the body, causing progressive damage to the brain, heart, and other organs. There is no effective treatment and life expectancy for many of these children is only around ten years.

Dr. Gomez-Ospina will use the patient’s own blood stem cells that have been genetically edited to restore the missing enzyme. The goal of this preclinical program is to show the team can manufacture the needed cells, to complete safety studies and to apply to the US Food and Drug Administration for an Investigational New Drug (IND), the authorization needed to begin a clinical trial in people.

Finally the Board awarded $20,401,260 to five programs as part of its Translational program. The goal of the Translational program is to support promising stem cell-based or gene projects that accelerate completion of translational stage activities necessary for advancement to clinical study or broad end use. Those can include therapeutic candidates, diagnostic methods  or devices and novel tools that address critical bottlenecks in research.

The successful applicants are:

APPLICATIONTITLEPRINCIPAL INVESTIGATOR – INSTITUTIONAMOUNT  
TRAN4-14124Cell Villages and Clinical Trial in a Dish with Pooled iPSC-CMs for Drug DiscoveryNikesh Kotecha — Greenstone Biosciences  $1,350,000
TRAN1-14003Specific Targeting Hypoxia Metastatic Breast Tumor with Allogeneic Off-the-Shelf Anti-EGFR CAR NK Cells Expressing an ODD domain of HIF-1αJianhua Yu — Beckman Research Institute of City of Hope  $6,036,002  
TRAN1-13983CRISPR/Cas9-mediated gene editing of Hematopoietic
stem and progenitor cells for Friedreich’s ataxia
Stephanie Cherqui — University of California, San Diego  $4,846,579
TRAN1-13997Development of a Gene Therapy for the Treatment of
Pitt Hopkins Syndrome (PHS) – Translating from Animal Proof of Concept to Support Pre-IND Meeting
Allyson Berent — Mahzi Therapeutics  $4,000,000
TRAN1-13996Overcoming resistance to standard CD19-targeted CAR
T using a novel triple antigen targeted vector
William J Murphy — University of California, Davis  $4,168,679

An experimental gene therapy with a hairy twist

In October 2019, 20-year-old Jordan Janz became the first person in the world to receive an experimental therapy for cystinosis. Cystinosis is a rare genetic disorder characterized by the accumulation of an amino acid called cystine in different tissues and organs of the body including the kidneys, eyes, muscles, liver, pancreas, and brain. This accumulation of cystine ultimately leads to multi-organ failure, eventually causing premature death in early adulthood. On average, cystinosis patients live to 28.5 years old. By that calculation, Janz didn’t have a lot of time.

The treatment was grueling but worth it. The experimental gene therapy funded by the California Institute for Regenerative Medicine seemed to work and Janz began to feel better. There was, however, an unexpected change. Janz’s almost white, blonde hair had settled into a darker tone. Of all the things the gene therapy was expected to alter such as the severity of his cystinosis symptoms hair color was not one of them. Eventually, the same phenomenon played out in other people: So far in the gene-therapy trial, four of the five patients all of whom are white have gotten darker hair.

The outcome, while surprising to researchers, didn’t seem to be a sign of something going awry, instead they determined that it might be a very visible sign of the gene therapy working.

The sudden hair-color changes were surprising to Stephanie Cherqui, a stem-cell scientist at UC San Diego and the principal investigator of the gene-therapy trial. However, it didn’t seem to be a sign of something going awry, instead Cherqui and her colleagues determined that it might be a very visible sign of the gene therapy working.

But exactly how did genetically modifying Janz’s (and other participants’) blood cells change his hair color? In this instance, scientists chose to genetically tweak blood stem cells because they have a special ability: Some eventually become white blood cells, which then travel to all different parts of the body.

Janz’s new white blood cells were genetically modified to express the gene that is mutated in cystinosis, called CTNS. Once they traveled to his eyes, skin, and gut, the white blood cells began pumping out the missing protein encoded by the gene. Cells in the area began taking up the protein and clearing away long accumulated cystine crystals. In Janz, the anti-cystine proteins from his modified blood cells must have reached the hair follicles in his skin. There, they cleared out the excess cystine that was blocking normal melanin production, and his hair got darker.

Hair color is one way in which patients in the clinical trial are teaching scientists about the full scope of the CTNS gene. The investigators have since added hair biopsies to the trial in order to track the color changes in a more systematic fashion.

Read the full article on The Atlantic.

CIRM funded trial may pave way for gene therapy to treat different diseases

Image Description: Jordan Janz (left) and Dr. Stephanie Cherqui (right)

According to the  National Organization for Rare Disorders (NORD), a disease is consider rare if it affects fewer than 200,000 people. If you combine the over 7,000 known rare diseases, about 30 million people in the U.S. are affected by one of these conditions. A majority of these conditions have no cure or have very few treatment options, but a CIRM funded trial (approximately $12 million) for a rare pediatric disease has showed promising results in one patient using a gene therapy approach. The hope for the field as a whole is that this proof of concept might pave the way to use gene therapy to treat other diseases.

Cystinosis is a rare disease that primarily affects children and young adults, and leads to premature death, usually in early adulthood.  Patients inherit defective copies of a gene that results in abnormal accumulation of cystine (hence the name cystinosis) in all cells of the body.  This buildup of cystine can lead to multi-organ failure, with some of earliest and most pronounced effects on the kidneys, eyes, thyroid, muscle, and pancreas.  Many patients suffer end-stage kidney failure and severe vision defects in childhood, and as they get older, they are at increased risk for heart disease, diabetes, bone defects, and neuromuscular problems.  There is currently a drug treatment for cystinosis, but it only delays the progression of the disease, has severe side effects, and is expensive.

Dr. Stephane Cherqui at UC San Diego (UCSD), in partnership with AVROBIO, is conducting a clinical trial that uses a gene therapy approach to modify a patient’s own blood stem cells with a functional version of the defective gene. The corrected stem cells are then reintroduced into the patient with the hope that they will give rise to blood cells that will reduce cystine buildup in the body.  

22 year old Jordan Janz was born with cystinosis and was taking anywhere from 40 to 60 pills a day as part of his treatment. Unfortunately the medication affected his body odor, leaving him smelling like rotten eggs or stinky cheese. In 2019, Jordan was the first of three patients to participate in Dr. Cherqui’s trial and the results have been remarkable. Tests have shown that the cystine in his eyes, skin and muscle have greatly decreased. Instead of the 40-60 pills a day, he just takes vitamins and specific nutrients his body needs. What’s more is that he no longer has a problem with body odor caused by the pills he once had to take. Although it will take much more time know if Jordan was cured of the disease, he says that he feels “essentially cured”.

In an article from the Associated Press, Jordan is optimistic about his future.

“I have more of a life now. I’m going to school. I’m hoping to open up my own business one day.”

You can learn more about Jordan by watching the video below:

Although gene therapy approaches still need to be closely studied, they have enormous potential for treating patients. CIRM has funded other clinical trials that use gene therapy approaches for different genetic diseases including X-SCID, ADA-SCID, ART-SCID, X-CGD, and sickle cell disease.

Perseverance: from theory to therapy. Our story over the last year – and a half

Some of the stars of our Annual Report

It’s been a long time coming. Eighteen months to be precise. Which is a peculiarly long time for an Annual Report. The world is certainly a very different place today than when we started, and yet our core mission hasn’t changed at all, except to spring into action to make our own contribution to fighting the coronavirus.

This latest CIRM Annual Reportcovers 2019 through June 30, 2020. Why? Well, as you probably know we are running out of money and could be funding our last new awards by the end of this year. So, we wanted to produce as complete a picture of our achievements as we could – keeping in mind that we might not be around to produce a report next year.

Dr. Catriona Jamieson, UC San Diego physician and researcher

It’s a pretty jam-packed report. It covers everything from the 14 new clinical trials we have funded this year, including three specifically focused on COVID-19. It looks at the extraordinary researchers that we fund and the progress they have made, and the billions of additional dollars our funding has helped leverage for California. But at the heart of it, and at the heart of everything we do, are the patients. They’re the reason we are here. They are the reason we do what we do.

Byron Jenkins, former Naval fighter pilot who battled back from his own fight with multiple myeloma

There are stories of people like Byron Jenkins who almost died from multiple myeloma but is now back leading a full, active life with his family thanks to a CIRM-funded therapy with Poseida. There is Jordan Janz, a young man who once depended on taking 56 pills a day to keep his rare disease, cystinosis, under control but is now hoping a stem cell therapy developed by Dr. Stephanie Cherqui and her team at UC San Diego will make that something of the past.

Jordan Janz and Dr. Stephanie Cherqui

These individuals are remarkable on so many levels, not the least because they were willing to be among the first people ever to try these therapies. They are pioneers in every sense of the word.

Sneha Santosh, former CIRM Bridges student and now a researcher with Novo Nordisk

There is a lot of information in the report, charting the work we have done over the last 18 months. But it’s also a celebration of everyone who made it possible, and our way of saying thank you to the people of California who gave us this incredible honor and opportunity to do this work.

We hope you enjoy it.

Two rare diseases, two pieces of good news

Dr. Stephanie Cherqui

Last week saw a flurry of really encouraging reports from projects that CIRM has supported. We blogged about two of them last Wednesday, but here’s another two programs showing promising results.

UC San Diego researcher Dr. Stephanie Cherqui is running a CIRM-funded clinical trial for cystinosis. This is a condition where patients lack the ability to clear an amino acid called cystine from their cells. As the cystine builds up it can lead to multi-organ failure affecting the kidneys, eyes, thyroid, muscle, and pancreas.

Dr. Cherqui uses the patient’s own blood stem cells, that have been genetically corrected in the lab to remove the defective gene that causes the problem. It’s hoped these new cells will help reduce the cystine buildup.

The data presented at the annual meeting of the American Society of Cell and Gene Therapy (ASCGT) focused on the first patient treated with this approach. Six months after being treated the patient is showing positive trends in kidney function. His glomerular filtration rate (a measure of how well the kidneys are working) has risen from 38 (considered a sign of moderate to severe loss of kidney function) to 52 (mild loss of kidney function). In addition, he has not had to take the medication he previously needed to control the disorder, nor has he experienced any serious side effects from the therapy.

===============================================================

Dr. Linda Marban of Capricor

Capricor Therapeutics also had some positive news about its therapy for people with Duchenne’s Muscular Dystrophy (DMD). This is a progressive genetic disorder that slowly destroys the muscles. It affects mostly boys. By their teens many are unable to walk, and most die of heart or lung failure in their 20’s. 

Capricor is using a therapy called CAP-1002, using cells derived from heart stem cells, in the HOPE-2 clinical trial.

In a news release Capricor said 12-month data from the trial showed improvements in heart function, lung function and upper body strength. In contrast, a placebo control group that didn’t get the CAP-1002 treatment saw their condition deteriorate.

Craig McDonald, M.D., the lead investigator on the study, says these results are really encouraging.  “I am incredibly pleased with the outcome of the HOPE-2 trial which demonstrated clinically relevant benefits of CAP-1002 which resulted in measurable improvements in upper limb, cardiac and respiratory function. This is the first clinical trial which shows benefit to patients in advanced stages of DMD for which treatment options are limited.”

You can read the story of Caleb Sizemore, one of the patients treated in the CIRM-funded portion of this trial.

‘A Tornado at the Front Door, a Tsunami at the Back Door’

CIRM funds a lot of research and all of it has life-saving potential. But every once in a while you come across a story about someone benefiting from CIRM-supported research that highlights why the work we do is so important. This story is about a brilliant researcher at UC San Diego developing a treatment for a really rare disease, one that was unlikely to get funding from a big pharmaceutical company because it offered little chance for a return on its investment. At CIRM we don’t have to worry about things like that. Stories like this are our return on investment.

Our thanks to our colleagues at UCSD News for allowing us to run this piece in full.

Jordan Janz and Dr. Stephanie Cherqui in her lab at the UC San Diego School of Medicine: Photo courtesy UC San Diego

====================================

By Heather Buschman, PhD

Born with a rare disease called cystinosis, 20-year-old Jordan Janz arrived at a crossroads: continue life as-is, toward a future most likely leading to kidney failure and an early death or become the first patient in the world to undergo a new gene-and-stem cell therapy developed over more than a decade by UC San Diego School of Medicine researchers

For the majority of Jordan Janz’s 20 years of life, most neighbors in his tiny Canadian town never knew he was sick. Janz snowboarded, hunted and fished. He hung with friends, often playing ice hockey video games. He worked in shipping and receiving for a company that makes oil pumps.

But there were times when Janz was younger that he vomited up to 13 times each day. He received a growth hormone injection every day for six years. He needed to swallow 56 pills every day just to manage his symptoms. And the medication required around-the-clock administration, which meant his mother or another family member had to get up with him every night.

“I was tired for school every day,” Janz said. “I was held back in second grade because I missed so much school. And because the medication had a bad odor to it, when I did go to school kids would ask, ‘What’s that smell?’ It was hard.”

Janz was born with cystinosis, a rare metabolic disorder that’s detected in approximately one in 100,000 live births worldwide. People with cystinosis inherit a mutation in the gene that encodes a protein called cystinosin. Cystinosin normally helps cells transport the amino acid cystine. Because cells in people with cystinosis don’t produce the cystinosin protein, cystine accumulates. Over the years, cystine crystals build up and begin to damage tissues and organs, from the kidneys and liver to muscles, eyes and brain. Numerous symptoms and adverse consequences result.

These days, Janz manages his condition. There’s a time-release version of the symptom-relieving medication now that allows him to go 12 hours between doses, allowing for a good night’s sleep. But there’s no stopping the relentless accumulation of cystine crystals, no cure for cystinosis.  

In October 2019, Janz became the first patient to receive treatment as part of a Phase I/II clinical trial to test the safety and efficacy of a unique gene therapy approach to treating cystinosis. The treatment was developed over more than a decade of research by Stephanie Cherqui, PhD, associate professor of pediatrics, and her team at University of California San Diego School of Medicine.

“The day they started looking for people for the trial, my mom picked up the phone, found a number for Dr. Cherqui, called her and put my name in as a candidate,” Janz said.

Janz’s mom, Barb Kulyk, has long followed Cherqui’s work. Like many parents of children with cystinosis, Kulyk has attended conferences, read up on research and met many other families, doctors and scientists working on the condition. Kulyk says she trusts Cherqui completely. But she was understandably nervous for her son to be the first person ever to undergo a completely new therapy.

“It’s like giving birth,” she said shortly before Janz received his gene therapy. “You’re really looking forward to the outcome, but dreading the process.”

The treatment

Cherqui’s gene therapy approach involves genetical modifying the patient’s own stem cells. To do this, her team obtained hematopoietic stem cells from Janz’s bone marrow. These stem cells are the precursors to all blood cells, including both red blood cells and immune cells. The scientists then re-engineered Janz’s stem cells in a lab using gene therapy techniques to introduce a normal version of the cystinosin gene. Lastly, they reinfused Janz with his own now-cystinosin-producing cells. The approach is akin to a bone marrow transplant — the patient is both donor and recipient.

“A bone marrow transplant can be very risky, especially when you take hematopoietic stem cells from a another person. In that case, there’s always the chance the donor’s immune cells will attack the recipient’s organs, so-called graft-versus-host disease,” Cherqui explained. “It’s a great advantage to use the patient’s own stem cells.”

As is the case for other bone marrow transplants, Janz’s gene-modified stem cells are expected to embed themselves in his bone marrow, where they should divide and differentiate to all types of blood cells. Those cells are then expected to circulate throughout his body and embed in his tissues and organs, where they should produce the normal cystinosin protein. Based on Cherqui’s preclinical data, she expects the cystinosin protein will be transferred to the surrounding diseased cells. At that point, Janz’s cells should finally be able to appropriately transport cystine for disposal — potentially alleviating his symptoms.

Before receiving his modified stem cells, Janz had to undergo chemotherapy to make space in his bone marrow for the new cells. Not unexpectedly, Janz experienced a handful of temporary chemotherapy-associated side-effects, including immune suppression, hair loss and fatigue. He also had mucositis, an inflammation of mucous membranes lining the digestive tract, which meant he couldn’t talk or eat much for a few days.

Now, only three months after his transfusion of engineered stem cells, Cherqui reports that Janz is making a good recovery, though it’s still too early to see a decrease in his cystinosis-related symptoms.

“I’ve been sleeping at least 10 hours a day for the last few weeks,” Janz said. “It’s crazy, but I know my body is just working hard to, I guess, create a new ‘me.’ So it’s no wonder I’m tired. But I’m feeling okay overall.

“One of the hardest parts for me is being inactive for so long. I’m not used to doing nothing all day. But I’m taking an online course while I wait for my immune system to rebuild. And I’m getting pretty good at video games.”

Like all Phase I/II clinical trials, the current study is designed to first test the safety and tolerability of the new treatment. Janz knows the treatment might not necessarily help him.

“When we started this trial, my mom explained it like this: ‘We have a tornado at the front door and a tsunami at the back door, and we have to pick one to go through. Neither will be any fun and we don’t know what’s going to happen, but you have to believe you will make it and go.

“So we weighed the pros and cons and, basically, if I don’t do this trial now, when I’m older I might not be healthy and strong enough for it. So I decided to go for it because, even if there are consequences from the chemotherapy, if it works I could live 20 years longer than I’m supposed to and be healthy for the rest of my life. That’s worth it.”

Besides the possible benefit to himself, Janz also sees his participation in the clinical trial as a way to contribute to the tight-knit community of families with children who have cystinosis.

“I’m willing to do if it helps the kids,” he said. “Somebody has to do it. I don’t have the money to donate to scientific conferences and stuff like that, but I can do this trial.”

The trial

If the treatment continues to meet certain criteria for safety and efficacy for Janz and one other participant after three months, two more adult participants will be enrolled. Three months after that, if the treatment continues to be safe and effective, the trial might enroll two adolescent participants. To participate in the clinical trial, individuals must meet specific eligibility requirements.

Later in the trial, Cherqui and team will begin measuring how well the treatment actually works. The specific objectives include assessing the degree to which gene-modified stem cells establish themselves in  bone marrow, how they affect cystine levels and cystine crystal counts in blood and tissues.

“This trial is the first to use gene-modified hematopoietic stem cell gene therapy to treat a multi-organ degenerative disorder for which the protein is anchored in the membrane of the lysosomes, as opposed to secreted enzymes,” Cherqui said. “We were amazed when we tested this approach in the mouse model of cystinosis — autologous stem cell transplantation reversed the disease. The tissues remained healthy, even the kidneys and the eyes.”

Trial participants are closely monitored for the first 100 days after treatment, then tested again at six, nine, 12, 18 and 24 months post-gene therapy for a variety of factors, including vital signs, cystine levels in a number of organs, kidney function, hormone function and physical well-being.

“If successful in clinical trials, this approach could provide a one-time, lifelong therapy that may prevent the need for kidney transplantation and long-term complications caused by cystine buildup,” Cherqui said.

The future

For the trial participants, all of the pre-treatment tests, the treatment itself, and monitoring afterward means a lot of travel to and long stays in San Diego.

It’s tough on Kulyk and Janz. They have to fly in from Alberta, Canada and stay in a San Diego hotel for weeks at a time. Kulyk has two older adult children, as well as a 12-year-old and a seven-year-old at home. 

“I’ve missed a lot of things with my other kids, but none of them seem to hold any grudges,” she said. “They seem to be totally fine and accepting. They’re like, ‘We’re fine, mom. You go and take care of Jordan.’”

Janz is looking forward to getting back home to his friends, his dog and his job, which provided him with paid leave while he received treatment and recovers.

For Cherqui, the search for a cystinosis cure is more than just a scientific exercise. Cherqui began working on cystinosis as a graduate student more than 20 years ago. At the time, she said, it was simply a model in which to study genetics and gene therapy.

“When you read about cystinosis, it’s just words. You don’t put a face to it. But after I met all the families, met the kids, and now that I’ve seen many of them grow up, and some of them die of the disease — now it’s a personal fight, and they are my family too.”

Patients with cystinosis typically experience kidney failure in their 20s, requiring kidney dialysis or transplantation for survival. For those born with cystinosis who make it into adulthood, the average lifespan is approximately 28 years old.

“I’m optimistic about this trial because it’s something we’ve worked so hard for and now it’s actually happening, and these families have so much hope for a better treatment,” Cherqui said. “After all the years of painstaking laboratory research, we now need to move into the clinic. If this works, it will be wonderful. If it doesn’t, we will all be disappointed but a least we’ll be able to say we tried.”

Nancy Stack, who founded the Cystinosis Research Foundation after her own daughter, Natalie, was diagnosed with the disease, calls Cherqui “the rock star of our community.”

“She cares deeply about the patients and is always available to talk, to explain her work and to give us hope,” Stack said. “She said years ago that she would never give up until she found the cure — and now we are closer to a cure than ever before.” (Read more about Natalie here.)

In addition to cystinosis, Cherqui says this type of gene therapy approach could also lead to treatment advancements for other multi-organ degenerative disorders, such as Friedreich’s ataxia and Danon disease, as well as other kidney, genetic and systemic diseases similar to cystinosis.

While they wait for the long-term results of the treatment, Kulyk is cautiously hopeful.

“Moms are used to being able to fix everything for their children — kiss boo-boos make them better, make cupcakes for school, whip up Halloween costumes out of scraps, pull a coveted toy out of thin air when it has been sold out for months.

“But we have not been able to fix this, to take it away. I not only want this disease gone for my child, I want cystinosis to be nothing more than a memory for all the children and adults living with it. I know that even if and when Jordan is cured, there will still be so much work to do, in terms of regulatory approvals and insurance coverage.

“Having hope for your child’s disease to be cured is a slippery slope. We have all been there, held hope in our hands and had to let go. But, I find myself in a familiar place, holding onto hope again and this time I am not letting go.”

Video of Dr. Cherqui and Jordan Janz talking about the therapy

For more information about the Phase I/II clinical trial for cystinosis and to learn how to enroll, call 1-844-317-7836 or email alphastemcellclinic@ucsd.edu.

Cherqui’s research has been funded by the Cystinosis Research Foundation, California Institute for Regenerative Medicine (CIRM), and National Institutes of Health. She receives additional support from the Sanford Stem Cell Clinical Center and CIRM-funded Alpha Stem Cell Clinic at UC San Diego Health, and AVROBIO.

The Top CIRM Blogs of 2019

This year the most widely read blog was actually one we wrote back in 2018. It’s the transcript of a Facebook Live: “Ask the Stem Cell Team” event about strokes and stroke recovery. Because stroke is the third leading cause of death and disability in the US it’s probably no surprise this blog has lasting power. So many people are hoping that stem cells will help them recover from a stroke.

But of the blogs that we wrote and posted this year there’s a really interesting mix of topics.

The most read 2019 blog was about a potential breakthrough in the search for a treatment for type 1 diabetes (T1D).  Two researchers at UC San Francisco, Dr. Matthias Hebrok and Dr. Gopika Nair developed a new method of replacing the insulin-producing cells in the pancreas that are destroyed by type 1 diabetes. 

Dr. Matthias Hebrok
Dr. Gopika Nair

Dr. Hebrok described it as a big advance saying: “We can now generate insulin-producing cells that look and act a lot like the pancreatic beta cells you and I have in our bodies. This is a critical step towards our goal of creating cells that could be transplanted into patients with diabetes.”

It’s not too surprising a blog about type 1 diabetes was at the top. This condition affects around 1.25 million Americans, a huge audience for any potential breakthrough. However, the blog that was the second most read is the exact opposite. It is about a rare disease called cystinosis. How rare? Well, there are only around 500 children and young adults in the US, and just 2,000 worldwide diagnosed with this condition.  

It might be rare but its impact is devastating. A genetic mutation means children with this condition lack the ability to clear an amino acid – cysteine – from their body. The buildup of cysteine leads to damage to the kidneys, eyes, liver, muscles, pancreas and brain.

Dr. Stephanie Cherqui

UC San Diego researcher Dr. Stephanie Cherqui and her team are taking the patient’s own blood stem cells and, in the lab, genetically re-engineering them to correct the mutation, then returning the cells to the patient. It’s hoped this will create a new, healthy blood system free of the disease.

Dr. Cherqui says if it works, this could help not just people with cystinosis but a wide array of other disorders: “We were thrilled that the stem cells and gene therapy worked so well to prevent tissue degeneration in the mouse model of cystinosis. This discovery opened new perspectives in regenerative medicine and in the application to other genetic disorders. Our findings may deliver a completely new paradigm for the treatment of a wide assortment of diseases including kidney and other genetic disorders.”

Sickled cells

The third most read blog was about another rare disease, but one that has been getting a lot of media attention this past year. Sickle cell disease affects around 100,000 Americans, mostly African Americans. In November the Food and Drug Administration (FDA) approved Oxbryta, a new therapy that reduces the likelihood of blood cells becoming sickle shaped and clumping together – causing blockages in blood vessels.

But our blog focused on a stem cell approach that aims to cure the disease altogether. In many ways the researchers in this story are using a very similar approach to the one Dr. Cherqui is using for cystinosis. Genetically correcting the mutation that causes the problem, creating a new, healthy blood system free of the sickle shaped blood cells.

Two other blogs deserve honorable mentions here as well. The first is the story of James O’Brien who lost the sight in his right eye when he was 18 years old and now, 25 years later, has had it restored thanks to stem cells.

The fifth most popular blog of the year was another one about type 1 diabetes. This piece focused on the news that the CIRM Board had awarded more than $11 million to Dr. Peter Stock at UC San Francisco for a clinical trial for T1D. His approach is transplanting donor pancreatic islets and parathyroid glands into patients, hoping this will restore the person’s ability to create their own insulin and control the disease.

2019 was certainly a busy year for CIRM. We are hoping that 2020 will prove equally busy and give us many new advances to write about. You will find them all here, on The Stem Cellar.

“A new awakening”: One patient advocate’s fight for her daughters life

We often talk about the important role that patient advocates play in helping advance research. That was demonstrated in a powerful way last week when the CIRM Board approved almost $12 million to fund a clinical trial targeting a rare childhood disorder called cystinosis.

The award, to Stephanie Cherqui and her team at UC San Diego (in collaboration with UCLA) was based on the scientific merits of the program. But without the help of the cystinosis patient advocate community that would never have happened. Years ago the community held a series of fundraisers, bake sales etc., and used the money to help Dr. Cherqui get her research started.

That money enabled Dr. Cherqui to get the data she needed to apply to CIRM for funding to do more detailed research, which led to her award last week. There to celebrate the moment was Nancy Stack. Her testimony to the Board was a moving celebration of how long they have worked to get to this moment, and how much hope this research is giving them.

Nancy Stack is pictured in spring 2018 with her daughter Natalie Stack and husband Geoffrey Stack. (Lar Wanberg/Cystinosis Research Foundation)

Hello my name is Nancy Stack and I am the founder and president of the Cystinosis Research Foundation.  Our daughter Natalie was diagnosed with cystinosis when she was an infant. 

Cystinosis is a rare disease that is characterized by the abnormal accumulation of cystine in every cell in the body.  The build-up of cystine eventually destroys every organ in the body including the kidneys, eyes, liver, muscles, thyroid and brain.  The average age of death from cystinosis and its complications is 28 years of age.

For our children and adults with cystinosis, there are no healthy days. They take between 8-12 medications around the clock every day just to stay alive – Natalie takes 45 pills a day.  It is a relentless and devastating disease.

Medical complications abound and our children’s lives are filled with a myriad of symptoms and treatments – there are g-tube feedings, kidney transplants, bone pain, daily vomiting,  swallowing difficulties, muscle wasting, severe gastrointestinal side effects and for some blindness.   

We started the Foundation in 2003.  We have worked with and funded Dr. Stephanie Cherqui since 2006.   As a foundation, our resources are limited but we were able to fund the initial grants for Stephanie’s  Stem Cell studies. When CIRM awarded a grant to Stephanie in 2016, it allowed her to complete the studies, file the IND and as a result, we now have FDA approval for the clinical trial. Your support has changed the course of this disease. 

When the FDA approved the clinical trial for cystinosis last year, our community was filled with a renewed sense of hope and optimism.  I heard from 32 adults with cystinosis – all of them interested in the clinical trial.  Our adults know that this is their only chance to live a full life. Without this treatment, they will die from cystinosis.  In every email I received, there was a message of hope and gratitude. 

I received an email from a young woman who said this, “It’s a new awakening to learn this morning that human clinical trials have been approved by the FDA. I reiterate my immense interest to participate in this trial as soon as possible because my quality of life is at a low ebb and the trial is really my only hope. Time is running out”. 

And a mom of a 19 year old young man who wants to be the first patient in the trial wrote and said this, “On the day the trial was announced I started to cry tears of pure happiness and I thought, a mother somewhere gets to wake up and have a child who will no longer have cystinosis. I felt so happy for whom ever that mom would be….I never imagined that the mom I was thinking about could be me. I am so humbled to have this opportunity for my son to try to live disease free.

My own daughter ran into my arms that day and we cried tears of joy – finally, the hope we had clung to was now a reality. We had come full circle.  I asked Natalie how it felt to know that she could be cured and she said, “I have spent my entire life thinking that I would die from cystinosis in my 30s but now, I might live a full life and I am thinking about how much that changes how I think about my future. I never planned too far ahead but now I can”. 

As a mother, words can’t possible convey what it feels like to know that my child has a chance to live a long, healthy life free of cystinosis – I can breathe again. On behalf of all the children and adults with cystinosis, thank you for funding Dr. Cherqui, for caring about our community, for valuing our children and for making this treatment a reality.  Our community is ready to start this trial – thank you for making this happen.

*************

CIRM will be celebrating the role of patient advocates at a free event in Los Angeles tomorrow. It’s at the LA Convention Center and here are the details. And did I mention it’s FREE!

Tue, June 25, 2019 – 6:00 PM – 7:00 PM PDT

Petree Hall C., Los Angeles Convention Center, 1201 South Figueroa Street Los Angeles, CA 90015

And on Wednesday, USC is holding an event highlighting the progress being made in fighting diseases that destroy vision. Here’s a link to information about the event.

Rare disease gets go-ahead to run clinical trial

crf

A young girl with cystinosis: Photo courtesy CRF

Cystinosis is one of those diseases most people have never heard of and should be very grateful they haven’t. It’s rare – affecting only around 500 children and young adults in the US and just 2,000 people worldwide – but it’s nasty. Up to now the treatments for it have been very limited. But a new clinical trial, just given the go-ahead by the Food and Drug Administration (FDA), could help change that.

Cystinosis usually strikes children before they are two years old and can lead to end stage kidney failure before their tenth birthday. It is caused by a genetic mutation that allows an amino acid, cysteine, to build up in and damage the kidneys, eyes, liver, muscles, pancreas and brain.

There is one approved therapy, cysteamine, but this only delays progression of the disease, has severe side effects and people taking it still require kidney transplants, and develop diabetes, neuromuscular disorders and hypothyroidism.

All those are reasons why, in September 2016, the CIRM Board approved $5.2 million for U.C. San Diego researcher Stephanie Cherqui, Ph.D. and her team to try a different approach. Their goal is to take blood stem cells from people with cystinosis, genetically-modify them to remove the mutation that causes the disease, then return them to the patient. The hope is that the modified blood stem cells will create a new, healthy, blood system free of the disease.

Results from pre-clinical work testing this approach in mice have been so encouraging that the FDA has given the go-ahead for that work to now be tested in people.

In a news release Nancy Stack, the Founder and President of the Cystinosis Research Foundation (CRF), the largest provider of grants for cystinosis research in the world, says this is exciting news for a community that has been waiting for a breakthrough:

“We are thrilled that CRF’s dedication to funding Dr. Cherqui’s work has resulted in FDA approval for the first-ever stem cell and gene therapy treatment for individuals living with cystinosis. This approval from the FDA brings us one step closer to what we believe will be a cure for cystinosis and will be the answer to my daughter Natalie’s wish made fifteen years ago, ‘to have my disease go away forever.’ We are so thankful to our donors and our cystinosis families who had faith and believed this day would come.”

Dr. Cherqui says if this is successful it could help more than just people with cystinosis:

“We were thrilled that the stem cells and gene therapy worked so well to prevent tissue degeneration in the mouse model of cystinosis,. This discovery opened new perspectives in regenerative medicine and in the application to other genetic disorders. Our findings may deliver a completely new paradigm for the treatment of a wide assortment of diseases including kidney and other genetic disorders. If so, CRF, through their years of support will have helped an untold number of patients with untreatable, debilitating diseases.”

Those with questions on the trials can call toll free: 844-317-7836 (STEM) and/or visit www.cystinosisresarch.org