jCyte starts second phase of stem cell clinical trial targeting vision loss

retinitis pigmentosas_1

How retinitis pigmentosa destroys vision

Studies show that Americans fear losing their vision more than any other sense, such as hearing or speech, and almost as much as they fear cancer, Alzheimer’s and HIV/AIDS. That’s not too surprising. Our eyes are our connection to the world around us. Sever that connection, and the world is a very different place.

For people with retinitis pigmentosa (RP), the leading cause of inherited blindness in the world, that connection is slowly destroyed over many years. The disease eats away at the cells in the eye that sense light, so the world of people with RP steadily becomes darker and darker, until the light goes out completely. It often strikes people in their teens, and many are blind by the time they are 40.

There are no treatments. No cures. At least not yet. But now there is a glimmer of hope as a new clinical trial using stem cells – and funded by CIRM – gets underway.

klassenWe have talked about this project before. It’s run by UC Irvine’s Dr. Henry Klassen and his team at jCyte. In the first phase of their clinical trial they tested their treatment on a small group of patients with RP, to try and ensure that their approach was safe. It was. But it was a lot more than that. For people like Rosie Barrero, the treatment seems to have helped restore some of their vision. You can hear Rosie talk about that in our recent video.

Now the same treatment that helped Rosie, is going to be tested in a much larger group of people, as jCyte starts recruiting 70 patients for this new study.

In a news release announcing the start of the Phase 2 trial, Henry Klassen said this was an exciting moment:

“We are encouraged by the therapy’s excellent safety track record in early trials and hope to build on those results. Right now, there are no effective treatments for retinitis pigmentosa. People must find ways to adapt to their vision loss. With CIRM’s support, we hope to change that.”

The treatment involves using retinal progenitor cells, the kind destroyed by the disease. These are injected into the back of the eye where they release factors which the researchers hope will help rescue some of the diseased cells and regenerate some replacement ones.

Paul Bresge, CEO of jCyte, says one of the lovely things about this approach, is its simplicity:

“Because no surgery is required, the therapy can be easily administered. The entire procedure takes minutes.”

Not everyone will get the retinal progenitor cells, at least not to begin with. One group of patients will get an injection of the cells into their worst-sighted eye. The other group will get a sham injection with no cells. This will allow researchers to compare the two groups and determine if any improvements in vision are due to the treatment or a placebo effect.

The good news is that after one year of follow-up, the group that got the sham injection will also be able to get an injection of the real cells, so that if the therapy is effective they too may be able to benefit from it.

Rosie BarreroWhen we talked to Rosie Barrero about the impact the treatment had on her, she said it was like watching the world slowly come into focus after years of not being able to see anything.

“My dream was to see my kids. I always saw them with my heart, but now I can see them with my eyes. Seeing their faces, it’s truly a miracle.”

We are hoping this Phase 2 clinical trial gives others a chance to experience similar miracles.


Related Articles:

Three people left blind by Florida clinic’s unproven stem cell therapy

Unproven treatment

Unproven stem cell treatments endanger patients: Photo courtesy Healthline

The report makes for chilling reading. Three women, all suffering from macular degeneration – the leading cause of vision loss in the US – went to a Florida clinic hoping that a stem cell therapy would save their eyesight. Instead, it caused all three to go blind.

The study, in the latest issue of the New England Journal of Medicine, is a warning to all patients about the dangers of getting unproven, unapproved stem cell therapies.

In this case, the clinic took fat and blood from the patient, put the samples through a centrifuge to concentrate the stem cells, mixed them together and then injected them into the back of the woman’s eyes. In each case they injected this mixture into both eyes.

Irreparable harm

Within days the women, who ranged in age from 72 to 88, began to experience severe side effects including bleeding in the eye, detached retinas, and vision loss. The women got expert treatment at specialist eye centers to try and undo the damage done by the clinic, but it was too late. They are now blind with little hope for regaining their eyesight.

In a news release Thomas Alibini, one of the lead authors of the study, says clinics like this prey on vulnerable people:

“There’s a lot of hope for stem cells, and these types of clinics appeal to patients desperate for care who hope that stem cells are going to be the answer, but in this case these women participated in a clinical enterprise that was off-the-charts dangerous.”

Warning signs

So what went wrong? The researchers say this clinic’s approach raised a number of “red flags”:

  • First there is almost no evidence that the fat/blood stem cell combination the clinic used could help repair the photoreceptor cells in the eye that are attacked in macular degeneration.
  • The clinic charged the women $5,000 for the procedure. Usually in FDA-approved trials the clinical trial sponsor will cover the cost of the therapy being tested.
  • Both eyes were injected at the same time. Most clinical trials would only treat one eye at a time and allow up to 30 days between patients to ensure the approach was safe.
  • Even though the treatment was listed on the clinicaltrials.gov website there is no evidence that this was part of a clinical trial, and certainly not one approved by the Food and Drug Administration (FDA) which regulates stem cell therapies.

As CIRM’s Abla Creasey told the San Francisco Chronicle’s Erin Allday, there is little evidence these fat stem cells are effective, or even safe, for eye conditions.

“There’s no doubt there are some stem cells in fat. As to whether they are the right cells to be put into the eye, that’s a different question. The misuse of stem cells in the wrong locations, using the wrong stem cells, is going to lead to bad outcomes.”

The study points out that not all projects listed on the Clinicaltrials.gov site are checked to make sure they are scientifically sound and have done the preclinical testing needed to reduce the likelihood they may endanger patients.

goldberg-jeffrey

Jeffrey Goldberg

Jeffrey Goldberg, a professor of Ophthalmology at Stanford and the co-author of the study, says this is a warning to all patients considering unproven stem cell therapies:

“There is a lot of very well-founded evidence for the positive potential of stem therapy for many human diseases, but there’s no excuse for not designing a trial properly and basing it on preclinical research.”

There are a number of resources available to people considering being part of a clinical trial including CIRM’s “So You Want to Participate in a Clinical Trial”  and the  website A Closer Look at Stem Cells , which is sponsored by the International Society for Stem Cell Research (ISSCR).

CIRM is currently funding two clinical trials aimed at helping people with vision loss. One is Dr. Mark Humayun’s research on macular degeneration – the same disease these women had – and the other is Dr. Henry Klassen’s research into retinitis pigmentosa. Both these projects have been approved by the FDA showing they have done all the testing required to try and ensure they are safe in people.

In the past this blog has been a vocal critic of the FDA and the lengthy and cumbersome approval process for stem cell clinical trials. We have, and still do, advocate for a more efficient process. But this study is a powerful reminder that we need safeguards to protect patients, that any therapy being tested in people needs to have undergone rigorous testing to reduce the likelihood it may endanger them.

These three women paid $5,000 for their treatment. But the final cost was far greater. We never want to see that happen to anyone ever again.

California’s stem cell agency rounds up the year with two more big hits

icoc_dec2016-17

CIRM Board meeting with  Jake Javier, CIRM Chair Jonathan Thomas, Vice Chair Sen. Art Torres (Ret.) and President/CEO Randy Mills

It’s traditional to end the year with a look back at what you hoped to accomplish and an assessment of what you did. By that standard 2016 has been a pretty good year for us at CIRM.

Yesterday our governing Board approved funding for two new clinical trials, one to help kidney transplant patients, the second to help people battling a disease that destroys vision. By itself that is a no small achievement. Anytime you can support potentially transformative research you are helping advance the field. But getting these two clinical trials over the start line means that CIRM has also met one of its big goals for the year; funding ten new clinical trials.

If you had asked us back in the summer, when we had funded only two clinical trials in 2016, we would have said that the chances of us reaching ten trials by the end of the year were about as good as a real estate developer winning the White House. And yet……..

Helping kidney transplant recipients

The Board awarded $6.65 million to researchers at Stanford University who are using a deceptively simple approach to help people who get a kidney transplant. Currently people who get a transplant have to take anti-rejection medications for the rest of their life to prevent their body rejecting the new organ. These powerful immunosuppressive medications are essential but also come with a cost; they increase the risk of cancer, infection and heart disease.

icoc_dec2016-3

CIRM President/CEO Randy Mills addresses the CIRM Board

The Stanford team will see if it can help transplant patients bypass the need for those drugs by injecting blood stem cells and T cells (which play an important role in the immune system) from the kidney donor into the kidney recipient. The hope is by using cells from the donor, you can help the recipient’s body more readily adjust to the new organ and reduce the likelihood the body’s immune system will attack it.

This would be no small feat. Every year around 17,000 kidney transplants take place in the US, and many people who get a donor kidney experience fevers, infections and other side effects as a result of taking the anti-rejection medications. This clinical trial is a potentially transformative approach that could help protect the integrity of the transplanted organ, and improve the quality of life for the kidney recipient.

Fighting blindness

The second trial approved for funding is one we are already very familiar with; Dr. Henry Klassen and jCyte’s work in treating retinitis pigmentosa (RP). This is a devastating disease that typically strikes before age 30 and slowly destroys a person’s vision. We’ve blogged about it here and here.

Dr. Klassen, a researcher at UC Irvine, has developed a method of injecting what are called retinal progenitor cells into the back of the eye. The hope is that these cells will repair and replace the cells damaged by RP. In a CIRM-funded Phase 1 clinical trial the method proved safe with no serious side effects, and some of the patients also reported improvements in their vision. This raised hopes that a Phase 2 clinical trial using a larger number of cells in a larger number of patients could really see if this therapy is as promising as we hope. The Board approved almost $8.3 million to support that work.

Seeing is believing

How promising? Well, I recently talked to Rosie Barrero, who took part in the first phase clinical trial. She told me that she was surprised how quickly she started to notice improvements in her vision:

“There’s more definition, more colors. I am seeing colors I haven’t seen in years. We have different cups in our house but I couldn’t really make out the different colors. One morning I woke up and realized ‘Oh my gosh, one of them is purple and one blue’. I was by myself, in tears, and it felt amazing, unbelievable.”

Amazing was a phrase that came up a lot yesterday when we introduced four people to our Board. Each of the four had taken part in a stem cell clinical trial that changed their lives, even saved their lives. It was a very emotional scene as they got a chance to thank the group that made those trials, those treatments possible.

We’ll have more on that in a future blog.

 

 

 

 

How stem cells are helping change the face of medicine, one pioneering patient at a time

One of the many great pleasures of my job is that I get to meet so many amazing people. I get to know the researchers who are changing the face of medicine, but even more extraordinary are the people who are helping them do it, the patients.

Attacking Cancer

Karl

Karl Trede

It’s humbling to meet people like Karl Trede from San Jose, California. Karl is a quiet, witty, unassuming man who when the need arose didn’t hesitate to put himself forward as a medical pioneer.

Diagnosed with throat cancer in 2006, Karl underwent surgery to remove the tumor. Several years later, his doctors told him it had returned, only this time it had spread to his lungs. They told him there was no effective treatment. But there was something else.

“One day the doctor said we have a new trial we’re going to start, would you be interested? I said “sure”. I don’t believe I knew at the time that I was going to be the first one, but I thought I’d give it a whirl.”

Karl was Patient #1 in a clinical trial at Stanford University that was using a novel approach to attack cancer stem cells, which have the ability to evade standard anti-cancer treatments and cause the tumors to regrow. The team identified a protein, called CD47, that sits on the surface of cancer stem cells and helps them evade being gobbled up and destroyed by the patient’s own immune system. They dubbed CD47 the “don’t eat me” signal and created an antibody therapy they hoped would block the signal, leaving the cancer and the cancer stem cells open to attack by the immune system.

The team did pre-clinical testing of the therapy, using mice to see if it was safe. Everything looked hopeful. Even so, this was still the first time it was being tested in a human. Karl said that didn’t bother him.

“It was an experience for me, it was eye opening. I wasn’t real concerned about being the first in a trial never tested in people before. I said we know that there’s no effective treatment for this cancer, it’s not likely but it’s possible that this could be the one and if nothing else, if it doesn’t do anything for me hopefully it does something so they learn for others.”

It’s that kind of selflessness that is typical of so many people who volunteer for clinical trials, particularly Phase 1 trials, where a treatment is often being tried in people for the first time ever. In these trials, the goal is to make sure the approach is safe, so patients are given a relatively small dose of the therapy (cells or drugs) and told ahead of time it may not do any good. They’re also told that there could be some side effects, potentially serious, even life-threatening ones. Still, they don’t hesitate.

Improving vision

Rosie Barrero certainly didn’t hesitate when she got a chance to be part of a clinical trial testing the use of stem cells to help people with retinitis pigmentosa, a rare progressive disease that destroys a person’s vision and ultimately leaves them blind.

Rosalinda Barrero

Rosie Barrero

“I was extremely excited about the clinical trial. I didn’t have any fear or trepidation about it, I would have been happy being #1, and I was #6 and that was fine with me.”

 

Rosie had what are called retinal progenitor cells injected into her eye, part of a treatment developed by Dr. Henry Klassen at the University of California, Irvine. The hope was that those cells would help repair and perhaps even replace the light-sensing cells damaged by the disease.

Following the stem cell treatment, gradually Rosie noticed a difference. It was small things at first, like being able to make out the colors of cups in her kitchen cupboard, or how many trash cans were outside their house.

“I didn’t expect to see so much, I thought it would be minor, and it is minor on paper but it is hard to describe the improvement. It’s visible, it’s visible improvement.”

These are the moments that researchers like Henry Klassen live for, and have worked so tirelessly for. These are the moments that everyone at CIRM dreams of, when the work we have championed, supported and funded shows it is working, shows it is changing people’s lives.

One year ago this month our governing Board approved a new Strategic Plan, a detailed roadmap of where we want to go in the coming years. The plan laid out some pretty ambitious goals, such as funding 50 new clinical trials in the next 5 years, and at our Board meeting next week we’ll report on how well we are doing in terms of hitting those targets.

People like Karl and Rosie help motivate us to keep trying, to keep working as hard as we can, to achieve those goals. And if ever we have a tough day, we just have to remind ourselves of what Rosie said when she realized she could once again see her children.

“Seeing their faces. It’s pretty incredible. I always saw them with my heart so I just adore them, but now I can see them with my eye.”


Related Links:

CIRM-funded stem cell trial for retinitis pigmentosa makes progress

A CIRM-funded clinical trial for retinitis pigmentosa (RP), a degenerative eye disease that causes blindness, recently reached its next milestone and announced the completion of its patient enrollment for a phase I/IIa study testing a stem cell derived therapy. This is a major step forward in determining whether this approach is both safe and effective at improving sight in RP patients.

retinitis pigmentosas_1RP is a genetically inherited disease that destroys the light-sensing photoreceptor cells at the back of the eye. Symptoms of the disease typically appear in childhood and often cause blindness by the age of 40. RP affects approximately 100,000 people in the US, and there are no effective treatments.

Stem cell treatment for RP

Regenerative medicine offers a promising strategy for treating RP by replacing the lost or damaged photoreceptors in the retina with healthy retinal cells derived from human stem cells.

CIRM is funding a clinical trial that’s testing a stem cell-based treatment for advanced RP. The trial is sponsored by a California-based company called jCyte, which was founded in 2012 by Dr. Henry Klassen and Dr. Jing Yang, both currently professors at UC Irvine.

The treatment involves injecting human retinal progenitor cells, which are derived from adult stem cells, into the damaged area of the retina at the back of the eye to hopefully improve vision. These progenitor cells could either replace the damaged photoreceptors in the eye, or could help rescue the remaining photoreceptors from being destroyed.

RP clinical trials makes progress

Earlier this year, jCyte reported that they had treated the first nine patients in their phase I/IIa safety trial and did not observe any negative side effects caused by the treatment. Today, they announced that they have finished the trial enrollment with a total of 28 patients. Four different doses of retinal progenitor cells were tested in this patient group to determine both safety and the optimal dose of cells. While the results of this trial won’t be available until next year, eight of the enrolled patients have already completed the one-year study and have shown promising safety results.

In a jCyte news release, Dr. Klassen explained:

Klassen“We have successfully completed four DSMB (Data Safety Monitoring Board) reviews. So far, trial participants have had no significant side effects, with good tolerance of the injected cells. We are quite gratified by the results.”

CIRM is also happy to hear these positive findings as proving that a stem cell treatment is safe in patients is essential for moving a clinical trial forward. Jonathan Thomas, Chairman of the CIRM Governing Board commented in a CIRM news release:

Jonathan Thomas

Jonathan Thomas

“We are really encouraged by the preliminary safety results of the jCyte trial. RP is a rare disease and an unmet medical need that could benefit from advances in stem cell-based treatments. The jCyte trial will hopefully pave the way for determining how stem cells can improve vision in RP patients, and ultimately other diseases of blindness.”

Next steps

As this trial moves forward, jCyte hopes to begin planning a phase IIb trial that will determine whether their stem cell-based therapy is effective at improving vision in advanced RP patients.

“I look forward to the next stage of development towards commercialization,” said jCyte CEO Paul Bresge. “We never lose sight of our singular goal: to ultimately deliver this much-needed therapy to patients.”

If all goes well, additional RP patients will be needed to participate in the second phase of the jCyte trial. Patients who are interested in learning more about this trial or enrolling in future trials, should visit the jCyte website.

If you want to learn more about how stem cells could potentially yield new treatments for diseases of blindness, watch our video “Eyeing Stem Cell Therapies for Vision Loss”.


Related Links:

Trash talking and creating a stem cell community

imilce2

Imilce Rodriguez-Fernandez likes to talk trash. No, really, she does. In her case it’s cellular trash, the kind that builds up in our cells and has to be removed to ensure the cells don’t become sick.

Imilce was one of several stem cell researchers who took part in a couple of public events over the weekend, on either side of San Francisco Bay, that served to span both a geographical and generational divide and create a common sense of community.

The first event was at the Buck Institute for Research on Aging in Marin County, near San Francisco. It was titled “Stem Cell Celebration” and that’s pretty much what it was. It featured some extraordinary young scientists from the Buck talking about the work they are doing in uncovering some of the connections between aging and chronic diseases, and coming up with solutions to stop or even reverse some of those changes.

One of those scientists was Imilce. She explained that just as it is important for people to get rid of their trash so they can have a clean, healthy home, so it is important for our cells to do the same. Cells that fail to get rid of their protein trash become sick, unhealthy and ultimately stop working.

Imilce is exploring the cellular janitorial services our bodies have developed to deal with trash, and trying to find ways to enhance them so they are more effective, particularly as we age and those janitorial services aren’t as efficient as they were in our youth.

Unlocking the secrets of premature aging

Chris Wiley, another postdoctoral researcher at the Buck, showed that some medications that are used to treat HIV may be life-saving on one level, preventing the onset of full-blown AIDS, but that those benefits come with a cost, namely premature aging. Chris said the impact of aging doesn’t just affect one cell or one part of the body, but ripples out affecting other cells and other parts of the body. By studying the impact those medications have on our bodies he’s hoping to find ways to maintain the benefits of those drugs, but get rid of the downside.

Creating a Community

ssscr

Across the Bay, the U.C. Berkeley Student Society for Stem Cell Research held it’s 4th annual conference and the theme was “Culturing a Stem Cell Community.”

The list of speakers was a Who’s Who of CIRM-funded scientists from U.C. Davis’ Jan Nolta and Paul Knoepfler, to U.C. Irvine’s Henry Klassen and U.C. Berkeley’s David Schaffer. The talks ranged from progress in fighting blindness, to how advances in stem cell gene editing are cause for celebration, and concern.

What struck me most about both meetings was the age divide. At the Buck those presenting were young scientists, millennials; the audience was considerably older, baby boomers. At UC Berkeley it was the reverse; the presenters were experienced scientists of the baby boom generation, and the audience were keen young students representing the next generation of scientists.

Bridging the divide

But regardless of the age differences there was a shared sense of involvement, a feeling that regardless of which side of the audience we are on we all have something in common, we are all part of the stem cell community.

All communities have a story, something that helps bind them together and gives them a sense of common purpose. For the stem cell community there is not one single story, there are many. But while those stories all start from a different place, they end up with a common theme; inspiration, determination and hope.

 

Seeing is believing: how some scientists – including two funded by CIRM – are working to help the blind see

retinitis pigmentosas_1

How retinitis pigmentosa destroys vision – new stem cell research may help reverse that

“A pale hue”. For most of us that is a simple description, an observation about color. For Kristin Macdonald it’s a glimpse of the future. In some ways it’s a miracle. Kristin lost her sight to retinitis pigmentosa (RP). For many years she was virtually blind. But now, thanks to a clinical trial funded by CIRM she is starting to see again.

Kristin’s story is one of several examples of restoring sight in an article entitled “Why There’s New Hope About Ending Blindness” in the latest issue of National Geographic.  The article explores different approaches to treating people who were either born without vision or lost their vision due to disease or injury.

Two of those stories feature research that CIRM has funded. One is the work that is helping Kristin. Retinitis pigmentosa is a relatively rare condition that destroys the photoreceptors at the back of the eye, the cells that actually allow us to sense light. The National Geographic piece highlights how a research team at the University of California, Irvine, led by Dr. Henry Klassen, has been working on a way to use stem cells to replace and repair the cells damaged by RP.

“Klassen has spent 30 years studying how to coax progenitor cells—former stem cells that have begun to move toward being specific cell types—into replacing or rehabilitating failed retinal cells. Having successfully used retinal progenitor cells to improve vision in mice, rats, cats, dogs, and pigs, he’s testing a similar treatment in people with advanced retinitis pigmentosa.”

We recently blogged about this work and the fact that this team just passed it’s first major milestone – – showing that in the first nine patients treated none experienced any serious side effects. A Phase 1 clinical trial like this is designed to test for safety, so it usually involves the use of relatively small numbers of cells. The fact that some of those treated, like Kristin, are showing signs of improvement in their vision is quite encouraging. We will be following this work very closely and reporting new results as soon as they are available.

The other CIRM-supported research featured in the article is led by what the writer calls “an eyeball dream team” featuring University of Southern California’s Dr. Mark Humayun, described as “a courteous, efficient, impeccably besuited man.” And it’s true, he is.

The team is developing a stem cell device to help treat age-related macular degeneration, the leading cause of vision loss in the US.

“He and his fellow principal investigator, University of California, Santa Barbara stem cell biologist Dennis Clegg, call it simply a patch. That patch’s chassis, made of the same stuff used to coat wiring for pacemakers and neural implants, is wafer thin, bottle shaped, and the size of a fat grain of rice. Onto this speck Clegg distributes 120,000 cells derived from embryonic stem cells.”

Humayun and Clegg have just started their clinical trial with this work so it is likely going to be some time before we have any results.

These are just two of the many different approaches, using several different methods, to address vision loss. The article is a fascinating read, giving you a sense of how science is transforming people’s lives. It’s also wonderfully written by David Dobbs, including observations like this:

“Neuroscientists love the eye because “it’s the only place you see the brain without drilling a hole,” as one put it to me.”

For a vision of the future, a future that could mean restoring vision to those who have lost it, it’s a terrific read.

 

CIRM-funded stem cell clinical trial for retinitis pigmentosa focuses on next stage

rp1

How retinitis pigmentosa erodes normal vision

The failure rate for clinical trials is depressingly high. A study from Tufts University in 2010  found that for small molecules – the substances that make up more than 90 percent of the drugs on the market today – the odds of getting from a Phase 1 trial to approval by the Food and Drug Administration are just 13 percent. For stem cell therapies the odds are even lower.

That’s why, whenever a stem cell therapy shows good results it’s an encouraging sign, particularly when that therapy is one that we at CIRM are funding. So we were more than a little happy to hear that Dr. Henry Klassen and his team at jCyte and the University of California, Irvine have apparently cleared the first hurdle with their treatment for retinitis pigmentosa (RP).

jCyte has announced that the first nine patients treated for RP have shown no serious side effects, and they are now planning the next phase of their Phase 1/2a safety trial.

In a news release Klassen, the co-founder of jCyte, said:

“We are pleased with the results. Retinitis pigmentosa is an incurable retinal disease that first impacts people’s night vision and then progressively robs them of sight altogether. This is an important milestone in our effort to treat these patients.”

The therapy involves injecting human retinal progenitor cells into one eye to help save the light sensing cells that are destroyed by the disease. This enables the researchers to compare the treated eye with the untreated eye to see if there are any changes or improvements in vision.

So far, the trial has undergone four separate reviews by the Data Safety Monitoring Board (DSMB), an independent group of experts that examines data from trials to ensure they meet all safety standards and that results show patients are not in jeopardy. Results from the first nine people treated are encouraging.

The approach this RP trial is taking has a couple of advantages. Often when transplanting organs or cells from one person into another, the recipient has to undergo some kind of immunosuppression, to stop their body rejecting the transplant. But earlier studies show that transplanting these kinds of progenitor cells into the eye doesn’t appear to cause any immunological response. That means patients in the study don’t have to undergo any immunosuppression. Because of that, the procedure is relatively simple to perform and can be done in a doctor’s office rather than a hospital. For the estimated 1.5 million people worldwide who have RP that could make getting treatment relatively easy.

Of course the big question now is not only was it safe – it appears to be – but does it work? Did any of those people treated experience improvements in their vision? We will share those results with you as soon as the researchers make them available.

Next step for the clinical trial is to recruit more patients, and treat them with a higher number of cells. There’s still a long way to go before we will know if this treatment works, if it either slows down, stops, or better still helps reverse some of the effects of RP. But this is a really encouraging first step.


Related links:

Eyeing Stem Cell Therapies for Vision Loss

Back by popular demand (well, at least a handful of you demanded it!) we’re pleased to present the third installment of our Stem Cells in Your Face video series. Episodes one and two set out to explain – in a light-hearted, engaging and clear way – the latest progress in CIRM-funded stem cell research related to Lou Gehrig’s disease (Amyotrophic Lateral Sclerosis, or ALS) and sickle cell disease.

With episode three, Eyeing Stem Cell Therapies for Vision Loss, we turn our focus (pun intended) to two CIRM-funded clinical trials that are testing stem cell-based therapies for two diseases that cause severe visual impairment, retinitis pigmentosa (RP) and age-related macular degeneration (AMD).

Two Clinical Trials in Five Minutes
Explaining both the RP and AMD trials in a five-minute video was challenging. But we had an ace up our sleeve in the form of descriptive eye anatomy animations graciously produced and donated by Ben Paylor and his award-winning team at InfoShots. Inserting these motion graphics in with our scientist and patient interviews, along with the fabulous on-camera narration by my colleague Kevin McCormack, helped us cover a lot of ground in a short time. For more details about CIRM’s vision loss clinical trial portfolio, visit this blog tomorrow for an essay by my colleague Don Gibbons.

Vision Loss: A Well-Suited Target for Stem Cell Therapies
Of the wide range of unmet medical needs that CIRM is tackling, the development of stem cell-based treatments for vision loss is one of the furthest along. There are a few good reasons for that.

The eye is considered to be immune privileged, meaning the immune system is less accessible to this organ. As a result, there is less concern about immune rejection when transplanting stem cell-based therapies that did not originally come from the patient’s own cells.

The many established, non-invasive tools that can peer directly into the eye also make it an attractive target for stem cell–based treatment. Being able to continuously monitor the structure and function of the eye post-treatment will be critical for confirming the safety and effectiveness of these pioneering therapies.

Rest assured that we’ll be following these trials carefully. We eagerly await the opportunity to write future blogs and videos about encouraging results that could help the estimated seven million people in the U.S. suffering from disabling vision loss.

Related Links:

Stem Cellar archive: retinitis pigmentosa
Stem Cellar archive: macular degeneration
Video: Spotlight on Retinitis Pigmentosa
Video: Progress and Promise in Macular Degeneration
CIRM Fact Sheet on Vision Loss

A hopeful sight: therapy for vision loss cleared for clinical trial

Rosalinda Barrero

Rosalinda Barrero, has retinitis pigmentosa

Rosalinda Barrero says people often thought she was rude, or a snob, because of the way she behaved, pretending not to see them or ignoring them on the street. The truth is Rosalinda has retinitis pigmentosa (RP), a nasty disease, one that often attacks early in life and slowly destroys a person’s vision. Rosalinda’s eyes look normal but she can see almost nothing.

“I’ve lived my whole life with this. I told my daughters [as a child] I didn’t like to go Trick or Treating at Halloween because I couldn’t see. I’d trip; I’d loose my candy. I just wanted to stay home.”

Rosalinda says she desperately wants a treatment:

“Because I’m a mom and I would be so much a better mom if I could see. I could drive my daughters around. I want to do my part as a mom.”

Now a promising therapy for RP, funded by the stem cell agency, has been cleared by the Food and Drug Administration (FDA) to start a clinical trial in people.

The therapy was developed by Dr. Henry Klassen at the University of California, Irvine (UCI). RP is a relatively rare, inherited condition in which the light-sensitive cells at the back of the retina, cells that are essential for vision, slowly and progressively degenerate. Eventually it can result in blindness. There is no cure and no effective long-term treatment.

Dr. Klassen’s team will inject patients with stem cells, known as retinal progenitors, to help replace those cells destroyed by the disease and hopefully to save those not yet damaged.

In a news release about the therapy Dr. Klassen said the main goal of this small Phase I trial will be to make sure this approach is safe:

“This milestone is a very important one for our project. It signals a turning point, marking the beginning of the clinical phase of development, and we are all very excited about this project.”

Jonathan Thomas, the Chair of our Board, says that CIRM has invested almost $20 million to help support this work through early stage research and now, into the clinic.

“One of the goals of the agency is to provide the support that promising therapies need to progress and ultimately to get into clinical trials in patients. RP affects about 1.5 million people worldwide and is the leading cause of inherited blindness in the developed world. Having an effective treatment for it would transform people’s lives in extraordinary ways.”

Dr. Klassen says without that support it is doubtful that this work would have progressed as quickly as it has. And the support doesn’t just involve money:

“CIRM has played a critical and essential role in this project. While the funding is extremely important, CIRM also tutors and guides its grantees in the many aspects of translational development at every step of the way, and this accelerates during the later pre-clinical phase where much is at stake.”

This is now the 12th project that we are funding that has been approved by the FDA for clinical trials. It’s cause for optimism, but cautious optimism. These are small scale, early phase trials that in many cases are the first time these therapies have been tested in people. They look promising in the lab. Now it’s time to see if they are equally promising in people.

Considering we didn’t really start funding research until 2007 we have come a long way in a short time. Clearly we still have a long way to go. But the news that Dr. Klassen’s work has been given the go-ahead to take the next, big step, is a hopeful sign for Rosalinda and others with RP that we are at least heading in the right direction.

One of our recent Spotlight on Disease videos features Dr. Klassen and Rosalinda Barrero talking about RP.

This work will be one of the clinical trials being tested in our new Alpha Stem Cell Clinic Network. You can read more about that network here.