Images of clusters of heart muscle cells (in red and green) derived from human embryonic stem cells 40 days after transplantation. Courtesy UCLA
Every year more than 735,000 Americans have a heart attack. Many of those who survive often have lasting damage to their heart muscle and are at increased risk for future attacks and heart failure. Now CIRM-funded researchers at UCLA have identified a way that could help regenerate heart muscle after a heart attack, potentially not only saving lives but also increasing the quality of life.
The researchers used human embryonic stem cells to create a kind of cell, called a cardiac mesoderm cell, which has the ability to turn into cardiomyocytes, fibroblasts, smooth muscle, and endothelial cells. All these types of cells play an important role in helping repair a damaged heart.
As those embryonic cells were in the process of changing into cardiac mesoderms, the team was able to identify two key markers on the cell surface. The markers, called CD13 and ROR2 – which makes them sound like extras in the latest Star Wars movie – pinpointed the cells that were likely to be the most efficient at changing into the kind of cells needed to repair damaged heart tissue.
The researchers then transplanted those cells into an animal model and found that not only did many of the cells survive but they also produced the cells needed to regenerate heart muscle and vessels.
Big step forward
The research was published in the journal Stem Cell Reports. Dr. Reza Ardehali, the senior author of the CIRM-funded study, says this is a big step forward in the use of embryonic stem cells to help treat heart attacks:
“In a major heart attack, a person loses an estimated 1 billion heart cells, which results in permanent scar tissue in the heart muscle. Our findings seek to unlock some of the mysteries of heart regeneration in order to move the possibility of cardiovascular cell therapies forward. We have now found a way to identify the right type of stem cells that create heart cells that successfully engraft when transplanted and generate muscle tissue in the heart, which means we’re one step closer to developing cell-based therapies for people living with heart disease.”
More good news
But wait, as they say in cheesy TV infomercials, there’s more. Ardehali and his team not only found the markers to help them identify the right kinds of cell to use in regenerating damaged heart muscle, they also found a way to track the transplanted cells so they could make sure they were going where they wanted them to, and doing what they needed them to.
In a study published in Stem Cells Translational Medicine, Ardehali and his team used special particles that can be tracked using MRI. They used those particles to label the cardiac mesoderm cells. Once transplanted into the animal model the team was able to follow the cells for up to 40 days.
Ardehali says knowing how to identify the best cells to repair a damaged heart, and then being able to track them over a long period, gives us valuable tools to use as we work to develop better, more effective treatments for people who have had a heart attack.
CIRM is already funding a Phase 2 clinical trial, run by a company called Capricor, using stem cells to treat heart attack patients.