Timing is everything: could CRISPR gene editing push CIRM to change its rules on funding stem cell research?

CRISPR

Talk about timely. When we decided, several months ago, to hold a Standards Working Group (SWG) meeting to talk about the impact of CRISPR, a tool that is transforming the field of human gene editing, we had no idea that our meeting would fall smack in the midst of a flurry of news stories about the potential, but also the controversy, surrounding this approach.

Within a few days of our meeting lawmakers in the UK had approved the use of CRISPR for gene editing in human embryos for fertility research —a controversial first step toward what some see as a future of designer babies. And a U.S. Food and Drug Advisory report said conducting mitochondrial therapy research on human embryos is “ethically permissible”, under very limited conditions.

So it was clear from the outset that the SWG meeting was going to be touching on some fascinating and fast moving science that was loaded with ethical, social and moral questions.

Reviewing the rules

The goal of the meeting was to see if, in the light of advances with tools like CRISPR, we at CIRM needed to make any changes to our rules and regulations regarding the funding of this kind of work. We already have some strong guidelines in place to help us determine if we should fund work that involves editing human embryos, but are they strong enough?

There were some terrific speakers – including Nobel Prize winner Dr. David Baltimore; Alta Charo, a professor of Law and Bioethics at the University of Wisconsin-Madison  ; and Charis Thompson, chair of the Center for the Science, Technology, and Medicine in Society at the University of California, Berkeley – who gave some thought-provoking presentations. And there was also a truly engaged audience who offered some equally thought provoking questions.

CIRM Board member Jeff Sheehy highlighted how complex and broad ranging the issues are when he posed this question:

“Do we need to think about the rights of the embryo donor? If they have a severe inheritable disease and the embryo they donated for research has been edited, with CRISPR or other tools, to remove that potential do they have a right to know about that or even access to that technology for their own use?”

Alta Charo said this is not just a question for scientists, but something that could potentially affect everyone and so there is a real need to engage as many groups as possible in discussing it:

“How and to what extent do you involve patient advocates, members of the disability rights community and social justice community – racial or economic or geographic.  This is why we need these broader conversations, so we include all perspectives as we attempt to draw up guidelines and rules and regulations.”

It quickly became clear that the discussion was going to be even more robust than we imagined, and the issues raised were too many and too complex for us to hope to reach any conclusions or produce any recommendations in one day.

As Bernie Lo, President of the Greenwall Foundation in New York, who chaired the meeting said:

“We are not going to resolve these issues today, in fact what we have done is uncover a lot more issues and complexity.”

Time to ask tough questions

In the end it was decided that the most productive use of the day was not to limit the discussion at the workshop but to get those present to highlight the issues and questions that were most important and leave it to the SWG to then work through those and develop a series of recommendations that would eventually be presented to the CIRM Board.

The questions to be answered included but were not limited to:

1) Do we need to reconsider the language used in getting informed consent from donors in light of the ability of CRISPR and other technologies to do things that we previously couldn’t easily do?

2) Can we use CRISPR on previously donated materials/samples where general consent was given without knowing that these technologies could be available or can we only use it on biomaterials to be collected going forward?

3) Clarify whether the language we use about genetic modification should also include mitochondrial DNA as well as nuclear DNA.

4) What is the possibility that somatic or adult cell gene editing may lead to inadvertent germ line editing (altering the genomes of eggs and sperm will pass on these genetic modifications to the next generation).

5) How do we engage with patient advocates and other community groups such as the social justice and equity movements to get their input on these topics? Do we need to do more outreach and education among the public or specific groups and try to get more input from them (after all we are a taxpayer created and funded organization so we clearly have some responsibility to the wider California community and not just to researchers and patients)?

6) As CIRM already funds human embryo research should we now consider funding the use of CRISPR and other technologies that can modify the human embryo provided those embryos are not going to be implanted in a human uterus, as is the case with the recently approved research in the UK.

Stay tuned, more to come!

This was a really detailed dive into a subject that is clearly getting a lot of scientific attention around the world, and is no longer an abstract idea but is rapidly becoming a scientific reality. The next step is for a subgroup of the SWG to put together the key issues at stake here and place them in a framework for another discussion with the full SWG at some future date.

Once the SWG has reached consensus their recommendations will then go to the CIRM Board for its consideration.

We will be sure to update you on this as things progress.

Advertisements

Even the early worm gets old: study unlocks a key to aging

A new study poses the question, ‘When does aging really begin?’ One glance in the mirror every morning is enough for me to know that regardless of where it begins I know where it’s going. And it’s not pretty.

But enough about me. Getting back to the question about aging, two researchers at Northwestern University have uncovered some clues that may give us a deeper understanding of aging and longevity, and even lead to new ways of improving quality of life as we get older.

The researchers were focused on C. elegans, a transparent roundworm. They initially thought that aging was a gradual process: that it began slowly and then picked up pace as the animal got older. Instead they found that in C. elegans aging begins just as soon as the animal reaches reproductive maturity. It hits its peak of fertility, and it is all downhill from there.

The researchers say that once C. elegans has finished producing eggs and sperm – ensuring its line will continue – a genetic switch is thrown by germline stem cells. This flipped switch begins the aging process by turning off the ‘heat shock response’; that’s a mechanism the body uses to protect cells from conditions that would normally pose a threat or even be deadly.

In a news release Richard Morimoto, the senior author of the study, says that without that protective mechanism in place the aging process begins:

C. elegans has told us that aging is not a continuum of various events, which a lot of people thought it was. In a system where we can actually do the experiments, we discover a switch that is very precise for aging. All these stress pathways that insure robustness of tissue function are essential for life, so it was unexpected that a genetic switch is literally thrown eight hours into adulthood, leading to the simultaneous repression of the heat shock response and other cell stress responses.”

You read that right. In the case of poor old C. elegans the aging process begins just eight hours into adulthood. Of course the lifespan of the worm is only about 3 weeks so it’s not surprising the aging process kicks in quite so quickly.

To further test their findings the researchers carried out an experiment where they blocked the genetic switch from flipping, and the worm’s protective mechanisms remained strong.

Now, taking findings from something as small as a worm and trying to extrapolate them to larger animals is never easy. Nonetheless understanding what triggers aging in C. elegans could help us figure out if a similar process was taking place at the cellular level in people.

Morimoto says that knowledge might help us develop ways to improve our cellular quality of life and delay the onset of many of the diseases of aging:

“Wouldn’t it be better for society if people could be healthy and productive for a longer period during their lifetime? I am very interested in keeping the quality control systems optimal as long as we can, and now we have a target. Our findings suggest there should be a way to turn this genetic switch back on and protect our aging cells by increasing their ability to resist stress.”

The study is published in the journal Molecular Cell.