The Top CIRM Blogs of 2019

This year the most widely read blog was actually one we wrote back in 2018. It’s the transcript of a Facebook Live: “Ask the Stem Cell Team” event about strokes and stroke recovery. Because stroke is the third leading cause of death and disability in the US it’s probably no surprise this blog has lasting power. So many people are hoping that stem cells will help them recover from a stroke.

But of the blogs that we wrote and posted this year there’s a really interesting mix of topics.

The most read 2019 blog was about a potential breakthrough in the search for a treatment for type 1 diabetes (T1D).  Two researchers at UC San Francisco, Dr. Matthias Hebrok and Dr. Gopika Nair developed a new method of replacing the insulin-producing cells in the pancreas that are destroyed by type 1 diabetes. 

Dr. Matthias Hebrok
Dr. Gopika Nair

Dr. Hebrok described it as a big advance saying: “We can now generate insulin-producing cells that look and act a lot like the pancreatic beta cells you and I have in our bodies. This is a critical step towards our goal of creating cells that could be transplanted into patients with diabetes.”

It’s not too surprising a blog about type 1 diabetes was at the top. This condition affects around 1.25 million Americans, a huge audience for any potential breakthrough. However, the blog that was the second most read is the exact opposite. It is about a rare disease called cystinosis. How rare? Well, there are only around 500 children and young adults in the US, and just 2,000 worldwide diagnosed with this condition.  

It might be rare but its impact is devastating. A genetic mutation means children with this condition lack the ability to clear an amino acid – cysteine – from their body. The buildup of cysteine leads to damage to the kidneys, eyes, liver, muscles, pancreas and brain.

Dr. Stephanie Cherqui

UC San Diego researcher Dr. Stephanie Cherqui and her team are taking the patient’s own blood stem cells and, in the lab, genetically re-engineering them to correct the mutation, then returning the cells to the patient. It’s hoped this will create a new, healthy blood system free of the disease.

Dr. Cherqui says if it works, this could help not just people with cystinosis but a wide array of other disorders: “We were thrilled that the stem cells and gene therapy worked so well to prevent tissue degeneration in the mouse model of cystinosis. This discovery opened new perspectives in regenerative medicine and in the application to other genetic disorders. Our findings may deliver a completely new paradigm for the treatment of a wide assortment of diseases including kidney and other genetic disorders.”

Sickled cells

The third most read blog was about another rare disease, but one that has been getting a lot of media attention this past year. Sickle cell disease affects around 100,000 Americans, mostly African Americans. In November the Food and Drug Administration (FDA) approved Oxbryta, a new therapy that reduces the likelihood of blood cells becoming sickle shaped and clumping together – causing blockages in blood vessels.

But our blog focused on a stem cell approach that aims to cure the disease altogether. In many ways the researchers in this story are using a very similar approach to the one Dr. Cherqui is using for cystinosis. Genetically correcting the mutation that causes the problem, creating a new, healthy blood system free of the sickle shaped blood cells.

Two other blogs deserve honorable mentions here as well. The first is the story of James O’Brien who lost the sight in his right eye when he was 18 years old and now, 25 years later, has had it restored thanks to stem cells.

The fifth most popular blog of the year was another one about type 1 diabetes. This piece focused on the news that the CIRM Board had awarded more than $11 million to Dr. Peter Stock at UC San Francisco for a clinical trial for T1D. His approach is transplanting donor pancreatic islets and parathyroid glands into patients, hoping this will restore the person’s ability to create their own insulin and control the disease.

2019 was certainly a busy year for CIRM. We are hoping that 2020 will prove equally busy and give us many new advances to write about. You will find them all here, on The Stem Cellar.

The Most Important Gift of All

Photo courtesy American Hospital Association

There are many players who have a key role in helping make a stem cell therapy work. The scientists who develop the therapy, the medical team who deliver it and funders like CIRM who provide the money to make this all happen. But vital as they are, in some therapies there is another, even more important group; the people who donate life-saving organs and tissues for transplant and research.

Organ and tissue donation saves lives, increases knowledge of diseases, and allow for the development of novel medications to treat them. When individuals or their families authorize donation for transplant or medical research, they allow their loved ones to build a long-lasting legacy of hope that could not be accomplished in any other way.

Four of CIRM’s clinical trials involve organ donations – three kidney transplant programs (you can read about those here, here and here) and one targeting type 1 diabetes.

Dr. Nikole Neidlinger, the Chief Medical Officer with Donor Network West – the federally designated organ and tissue recovery organization for Northern California and Nevada – says it is important to recognize the critical contribution made in a time of grief and crisis by the families of deceased donors. 

“For many families who donate, a loved one has died, and they are in shock. Even so, they are willing to say yes to giving others a second chance at life and to help others to advance science. Without them, none of this would be possible. It’s the ultimate act of generosity and compassion.”

The latest CIRM-funded clinical trial involving donated tissue is with Dr. Peter Stock and his team at UCSF. They are working on a treatment for type 1 diabetes (T1D), where the body’s immune system destroys its own pancreatic beta cells. These cells are necessary to produce insulin, which regulates blood sugar levels in the body.

In the past people have tried transplanting beta cells, from donated pancreatic islets, into patients with type 1 diabetes to try and reverse the course of the disease. However, this requires islets from multiple donors and the shortage of organ and tissue donors makes this difficult to do.

Dr. Stock’s clinical trial at UCSF aims to address these limitations.  He is going to transplant both pancreatic islets and parathyroid glands, from the same donor, into T1 patients. It’s hoped this combination approach will increase beta cell survival, potentially boosting long-term insulin production and removing the need for multiple donors.  And because the transplant is placed in the patient’s forearm, it makes it easier to monitor the effectiveness and accessibility of the islet transplants. Of equal importance, the development of this site will facilitate the transplantation of stem cell derived beta cells, which are very close to clinical application.

“As a transplant surgeon, it is an absolute privilege to be able to witness the life-saving organ transplants made possible by the selfless generosity of the donor families. It is hard to imagine how families have the will to think about helping others at a time of their greatest grief. It is this willingness to help others that restores my faith in humanity”

Donor Network West plays a vital role in this process. In 2018 alone, the organization recovered 702 donor samples for research. Thanks to the generosity of the donors/donor families, the donor network has been able to provide parathyroid and pancreas tissue essential to make this clinical trial a success”

“One organ donor can save the lives of up to eight people and a tissue donor can heal more than 75 others,” says Dr. Neidlinger. “For families, the knowledge that they are transforming someone’s life, and possibly preventing another family from experiencing this same loss, can serve as a silver lining during their time of sorrow. .”

Organs that can be donated

Kidney (x2), Heart, Lungs (x2), Liver, Pancreas, Intestine

Tissue that can be donated

Corneas, Heart valves, Skin, Bone, Tendons, Cartilage, Veins

Currently, there are over 113,000 people in the U.S. waiting for an organ transplant, of which 84 % are in need of kidneys.  Sadly, 22 people die every day waiting for an organ transplant that does not come in time. The prospect of an effective treatment for type 1 diabetes means hope for thousands of people living with the chronic condition.

Stem Cell Agency Board Approves New Clinical Trial for Type 1 Diabetes

Dr. Peter Stock at the capitol in Sacramento in May 2016.
Photo courtesy of Steve German.

Today the governing Board of the California Institute for Regenerative Medicine (CIRM) awarded $11.08 Million to Dr. Peter Stock at the University of California San Francisco (UCSF) to conduct a clinical trial for treatment of Type 1 Diabetes (T1D).

The award brings the total number of CIRM funded clinical trials to 54. 

T1D is a chronic autoimmune disease that affects approximately 1.25 million Americans, with 40,000 new diagnoses each year.  T1D occurs as a result of the body’s immune system destroying its own pancreatic beta cells.  These cells are necessary to produce the vital hormone insulin, which regulates blood sugar levels in the body.  As a result of a lack of insulin, there is no blood sugar control in T1D patients, gradually causing disabling and life-threatening complications such as heart disease, nerve damage, and vision problems.

There is no cure for T1D.  Current treatments consist of blood sugar monitoring and multiple daily injections of insulin.  Transplantation of beta cells, contained in donor pancreatic islets, can reverse the symptoms of diabetes.  However, due to a poor islet survival rate, transplants require islets from multiple donors.  Furthermore, since islet cells are transplanted directly into the vessels that enter the liver, it is extremely difficult to monitor and retrieve these cells should the need arise. 

Dr. Stock’s clinical trial at UCSF aims to address these limitations.  The trial will be using parathyroid glands to aid in the success and viability of the transplant procedure.  Co-transplantation of islets and parathyroid glands, from the same donor, substantially increases beta cell survival, potentially enabling adequate long-term insulin production and removing the need for multiple donors.  Additionally, the co-transplantation will occur in the patient’s forearm, which allows for easier monitoring and improves the effectiveness and accessibility of islet transplants for patients.

“This team’s innovative approach to develop a definitive cell-based treatment for Type 1 Diabetes has the potential to address an unmet medical need that exists despite advancements in diabetes therapy.” says Maria T. Millan, M.D., the President and CEO of CIRM.  “The success of this clinical trial could enable the successful application of islet cell transplants but also of future stem-cell based approaches for diabetes.”

CIRM has funded three other clinical trials for T1D.  One of these was conducted by Caladrius Biosciences and two by ViaCyte, Inc.