
Zika virus is caused by a virus transmitted by Aedes mosquitoes. People usually develop mild symptoms that include fever, rash, and muscle and joint pain. However, Zika virus infection during pregnancy can lead to much more serious problems. The virus causes infants to be born with microcephaly, a condition in which the brain does not develop properly, resulting in an abnormally small head. In 2015-2016, the rapid spread of the virus was observed in Latin America and the Caribbean, increasing the urgency of understanding how the virus affected brain development.
Working independently, Dr. Tariq Rana and Dr. Jeremy Rich from UC San Diego identified the same molecule, αvβ5 integrin, as the Zika virus’ key to entering brain stem cells. The two studies, with the aid of CIRM funding, discovered how to take advantage of the molecule in order to block the Zika virus from infecting cells. In addition to this, they were able to turn it into something useful: a way to destroy brain cancer stem cells.
In the first study, Dr. Rana and his team used CRISPR gene editing on brain cancer stem cells to delete individual genes, which was done to see which genes are required for the Zika virus to enter the cells. They discovered that the gene responsible for αvβ5 integrin also enabled the Zika virus.
In a press release by UC San Diego, Dr. Rana elaborates on the importance of his findings.
“…we found Zika uses αvβ5, which is unique. When we further examined αvβ5 expression in brain, it made perfect sense because αvβ5 is the only integrin member enriched in neural stem cells, which Zika preferentially infects. Therefore, we believe that αvβ5 is the key contributor to Zika’s ability to infect brain cells.”
In the second study, Dr. Rich and his team use an antibody to block αvβ5 integrin and found that it prevented the virus from infecting brain cancer stem cells and normal brain stem cells. The team then went on to block αvβ5 integrin in a mouse model for glioblastoma, an aggressive type of brain tumor, by using an antibody or deactivating the gene responsible for the molecule. Both approaches blocked Zika virus infection and allowed the treated mice to live longer than untreated mice.
Dr. Rich then partnered with Dr. Alysson Muotri at UC San Diego to transplant glioblastoma tumors into laboratory “mini-brains” that can be used for drug discovery. The researchers discovered that Zika virus selectively eliminates glioblastoma stem cells from the mini-brains. Additionally, blocking αvβ5 integrin reversed that anti-cancer activity, further demonstrating the molecule’s crucial role in Zika virus’ ability to destroy cells.
In the same UC San Diego press release, Dr. Rich talks about how understanding Zika virus could help in treating glioblastoma.
“While we would likely need to modify the normal Zika virus to make it safer to treat brain tumors, we may also be able to take advantage of the mechanisms the virus uses to destroy cells to improve the way we treat glioblastoma.”
Dr. Rana’s full study was published in Cell Reports and Dr. Rich’s full study was published in Cell Stem Cell.