Drug used to treat multiple sclerosis may improve glioblastoma outcomes

Dr. Jeremy Rich, UC San Diego

Glioblastoma is an aggressive form of cancer that invades brain tissue, making it extremely difficult to treat. Current therapies involving radiation and chemotherapy are effective in destroying the bulk of brain cancer cells, but they are not able to reach the brain cancer stem cells, which have the ability to grow and multiply indefinitely. These cancer stem cells enable the glioblastoma to continuously grow even after treatment, which leads to recurring tumor formation.

Dr. Jeremy Rich and his team at UC San Diego examined glioblastomas further by obtaining glioblastoma tumor samples donated by patients that underwent surgery and implanting these into mice. Dr. Rich and his team tested a combinational treatment that included a targeted cancer therapy alongside a drug named teriflunomide, which is used to treatment patients with multiple sclerosis. The research team found that this approach successfully halted the growth of glioblastoma stem cells, shrank the tumor size, and improved survival in the mice.

In order to continue replicating, glioblastoma stem cells make pyrimidine, one of the compounds that make up DNA. Dr. Rich and his team noticed that higher rates of pyrimidine were associated with poor survival rates in glioblastoma patients. Teriflunomide works by blocking an enzyme that is necessary to make pyrmidine, therefore inhibiting glioblastoma stem cell replication.

In a press release, Dr. Rich talks about the potential these findings hold by stating that,

“We’re excited about these results, especially because we’re talking about a drug that’s already known to be safe in humans.”

However, he comments on the need to evaluate this approach further by saying that,

“This laboratory model isn’t perfect — yes it uses human patient samples, yet it still lacks the context a glioblastoma would have in the human body, such as interaction with the immune system, which we know plays an important role in determining tumor growth and survival. Before this drug could become available to patients with glioblastoma, human clinical trials would be necessary to support its safety and efficacy.”

The full results to this study were published in Science Translational Medicine.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.