Protein that turns normal cells into cancer stem cells offers target to fight colon cancer

colon-cancer

Colon cancer: Photo courtesy WebMD

Colon cancer is a global killer. Each year more than one million people worldwide are diagnosed with it; more than half a million die from it. If diagnosed early enough the standard treatment involves surgery, chemotherapy, radiation or targeted drug therapy to destroy the tumors. In many cases this may work. But in some cases, while this approach helps put people in remission, eventually the cancer returns, spreads throughout the body, and ultimately proves fatal.

Now researchers may have identified a protein that causes normal cells to become cancerous, and turn into cancer stem cells (CSCs). This discovery could help provide a new target for anti-cancer therapies.

Cancer stem cells are devilishly tricky. While most cancer cells are killed by chemotherapy or other therapies, cancer stem cells are able to lie dormant and hide, then emerge later to grow and spread, causing the person to relapse and the cancer to return.

In a study published in Nature Research’s Scientific Reports, researchers at SU Health New Orleans School of Medicine and Stanley S. Scott Cancer Center identified a protein, called SATB2, that appears to act as an “on/off” switch for specific genes inside a cancer cell.

In normal, healthy colorectal tissue SATB2 is not active, but in colorectal cancer it is highly active, found in around 85 percent of tumors. So, working with mice, the researchers inserted extra copies of the SATB2 gene, which produced more SATB2 protein in normal colorectal tissue. They found that this produced profound changes in the cell, leading to uncontrolled cell growth. In effect it turned a normal cell into a cancer stem cell.

As the researchers state in their paper:

“These data suggest that SATB2 can transform normal colon epithelial cells to CSCs/progenitor-like cells which play significant roles in cancer initiation, promotion and metastasis.”

When the researchers took colorectal cancer cells and inhibited SATB2 they found that this not only suppressed the growth of the cancer and it’s ability to spread, it also prevented those cancer cells from becoming cancer stem cells.

In a news release about the study Dr. Rakesh Srivastava,  the senior author on the paper, said the findings are important:

“Since the SATB2 protein is highly expressed in the colorectal cell lines and tissues, it can be an attractive target for therapy, diagnosis and prognosis.”

Because SATB2 is found in other cancers too, such as breast cancer, these findings may hold significance for more than just colorectal cancer.

The next step is to repeat the study in mice that have been genetically modified to better reflect the way colon cancer shows up in people. The team hope this will not only confirm their findings, but also give them a deeper understanding of the role that SATB2 plays in cancer formation and spread.

Advertisements

Stem cell agency funds clinical trials in three life-threatening conditions

strategy-wide

A year ago the CIRM Board unanimously approved a new Strategic Plan for the stem cell agency. In the plan are some rather ambitious goals, including funding ten new clinical trials in 2016. For much of the last year that has looked very ambitious indeed. But today the Board took a big step towards reaching that goal, approving three clinical trials focused on some deadly or life-threatening conditions.

The first is Forty Seven Inc.’s work targeting colorectal cancer, using a monoclonal antibody that can strip away the cancer cells ability to evade  the immune system. The immune system can then attack the cancer. But just in case that’s not enough they’re going to hit the tumor from another side with an anti-cancer drug called cetuximab. It’s hoped this one-two punch combination will get rid of the cancer.

Finding something to help the estimated 49,000 people who die of colorectal cancer in the U.S. every year would be no small achievement. The CIRM Board thought this looked so promising they awarded Forty Seven Inc. $10.2 million to carry out a clinical trial to test if this approach is safe. We funded a similar approach by researchers at Stanford targeting solid tumors in the lung and that is showing encouraging results.

Our Board also awarded $7.35 million to a team at Cedars-Sinai in Los Angeles that is using stem cells to treat pulmonary hypertension, a form of high blood pressure in the lungs. This can have a devastating, life-changing impact on a person leaving them constantly short of breath, dizzy and feeling exhausted. Ultimately it can lead to heart failure.

The team at Cedars-Sinai will use cells called cardiospheres, derived from heart stem cells, to reduce inflammation in the arteries and reduce blood pressure. CIRM is funding another project by this team using a similar  approach to treat people who have suffered a heart attack. This work showed such promise in its Phase 1 trial it’s now in a larger Phase 2 clinical trial.

The largest award, worth $20 million, went to target one of the rarest diseases. A team from UCLA, led by Don Kohn, is focusing on Adenosine Deaminase Severe Combined Immune Deficiency (ADA-SCID), which is a rare form of a rare disease. Children born with this have no functioning immune system. It is often fatal in the first few years of life.

The UCLA team will take the patient’s own blood stem cells, genetically modify them to fix the mutation that is causing the problem, then return them to the patient to create a new healthy blood and immune system. The team have successfully used this approach in curing 23 SCID children in the last few years – we blogged about it here – and now they have FDA approval to move this modified approach into a Phase 2 clinical trial.

So why is CIRM putting money into projects that it has either already funded in earlier clinical trials or that have already shown to be effective? There are a number of reasons. First, our mission is to accelerate stem cell treatments to patients with unmet medical needs. Each of the diseases funded today represent an unmet medical need. Secondly, if something appears to be working for one problem why not try it on another similar one – provided the scientific rationale and evidence shows it is appropriate of course.

As Randy Mills, our President and CEO, said in a news release:

“Our Board’s support for these programs highlights how every member of the CIRM team shares that commitment to moving the most promising research out of the lab and into patients as quickly as we can. These are very different projects, but they all share the same goal, accelerating treatments to patients with unmet medical needs.”

We are trying to create a pipeline of projects that are all moving towards the same goal, clinical trials in people. Pipelines can be horizontal as well as vertical. So we don’t really care if the pipeline moves projects up or sideways as long as they succeed in moving treatments to patients. And I’m guessing that patients who get treatments that change their lives don’t particularly

New Cellular Tracking Device Tests Ability of Cell-Based Therapies to Reach Intended Destination

Therapies aimed at replacing damaged cells with a fresh, healthy batch hold immense promise—but there remains one major sticking point: once you have injected new, healthy cells into the patient, how do you track them and how do you ensure they do the job for which they were designed?

New tracking technique could improve researchers' ability to test potential cell therapies.

New tracking technique could improve researchers’ ability to test potential cell therapies.

Unfortunately, there’s no easy solution. The problem of tracking the movement of cells during cell therapy is that it’s hard to stay on their trail they enter the body. They can get mixed up with other, native cells, and in order to test whether the therapy is working, doctors often have to rely on taking tissue samples.

But now, scientists at the University of California, San Diego School of Medicine and the University of Pittsburgh have devised an ingenious way to keep tabs on where cells go post injection. Their findings, reported last week in the journal Magnetic Resonance in Medicine, stand to help researchers identify whether cells are arriving at the correct destination.

The research team, lead by UCSD Radiology Professor Dr. Eric Ahrens, developed something called a periflourocarbon (PFC) tracer in conjunction with MRI technology. Testing this new technology in patients receiving immune cell therapy for colorectal cancer, the team found that they were better able to track the movement of the cells than with traditional methods.

“This is the first human PFC cell tracking agent, which is a new way to do MRI cell tracking,” said Ahrens in a news release. “It’s the first example of a clinical MRI agent designed specifically for cell tracking.”

They tagged these cells with atoms of fluorine, a compound that normally occurs at extremely low levels. After tagging the immune cells, the researchers could then see where they went after being injected. Importantly, the team found that more than one-half of the implanted cells left the injection site and headed towards the colon. This finding marks the first time this process had been so readily visible.

Ahrens explained the technology’s potential implications:

“The imaging agent technology has been shown to be able to tag any cell type that is of interest. It is a platform imaging technology for a wide range of diseases and applications.”

A non-invasive cell tracking solution could serve as not only as an attractive alternative to the current method of tissue sampling, it could even help fast-track through regulatory hurdles new stem cell-based therapies. According to Ahrens:

“For example, new stem cell therapies can be slow to obtain regulatory approvals in part because it is difficult, if not impossible, with current approaches to verify survival and location of transplanted cells…. Tools that allow the investigator to gain a ‘richer’ data set from individual patients mean it may be possible to reduce patient numbers enrolled in a trial, thus reducing total trial cost.”

What are the ways scientists see stem cells in the body? Check out our Spotlight Video on Magnetic Particle Imaging.