You can bank on CIRM

Way back in 2013, the CIRM Board invested $32 million in a project to create an iPSC Bank. The goal was simple;  to collect tissue samples from people who have different diseases, turn those samples into high quality stem cell lines – the kind known as induced pluripotent stem cells (iPSC) – and create a facility where those lines can be stored and distributed to researchers who need them.

Fast forward almost seven years and that idea has now become the largest public iPSC bank in the world. The story of how that happened is the subject of a great article (by CIRM’s Dr. Stephen Lin) in the journal Science Direct.

Dr. Stephen Lin

In 2013 there was a real need for the bank. Scientists around the world were doing important research but many were creating the cells they used for that research in different ways. That made it hard to compare one study to another and come up with any kind of consistent finding. The iPSC Bank was designed to change that by creating one source for high quality cells, collected, processed and stored under a single, consistent method.

Tissue samples – either blood or skin – were collected from thousands of individuals around California. Each donor underwent a thorough consent process – including being shown a detailed brochure – to explain what iPS cells are and how the research would be done.

The diseases to be studied through this bank include:

  • Age-Related Macular Degeneration (AMD)
  • Alzheimer’s disease
  • Autism Spectrum Disorder (ASD)
  • Cardiomyopathies (heart conditions)
  • Cerebral Palsy
  • Diabetic Retinopathy
  • Epilepsy
  • Fatty Liver diseases
  • Hepatitis C (HCV)
  • Intellectual Disabilities
  • Primary Open Angle Glaucoma
  • Pulmonary Fibrosis

The samples were screened to make sure they were safe – for example the blood was tested for HBV and HIV – and then underwent rigorous quality control testing to make sure they met the highest standards.

Once approved the samples were then turned into iPSCs at a special facility at the Buck Institute in Novato and those lines were then made available to researchers around the world, both for-profit and non-profit entities.

Scientists are now able to use these cells for a wide variety of uses including disease modeling, drug discovery, drug development, and transplant studies in animal research models. It gives them a greater ability to study how a disease develops and progresses and to help discover and test new drugs or other therapies

The Bank, which is now run by FUJIFILM Cellular Dynamics, has become a powerful resource for studying genetic variation between individuals, helping scientists understand how disease and treatment vary in a diverse population. Both CIRM and Fuji Film are committed to making even more improvements and additions to the collection in the future to ensure this is a vital resource for researchers for years to come.

HOPE for patients with Duchenne Muscular Dystrophy-associated heart disease

It’s an exciting week for CIRM-funded clinical trials. Yesterday, we blogged about a young man named Kris Boesen who is responding positively to a stem cell therapy in a Phase 1/2a CIRM-funded clinical trial for spinal cord injury run by Asterias Biotherapeutics. Paralyzed from the chest down after a terrible car accident, Kris now has regained some use of his arms and hands following the stem cell transplant.

screen-shot-2016-09-08-at-9-18-46-amYesterday, Capricor Therapeutics also announced news about the progress of its CIRM-funded clinical trial that’s testing the safety and efficacy of a cardiac cell therapy called CAP-1002 for Duchenne Muscular Dystrophy-associated cardiomyopathy. Capricor has completed their Phase 1/2 trial enrollment of 25 patients. These patients are young boys (12 years of age or above) suffering from a build-up of scar tissue in their hearts due to DMD-associated cardiomyopathy. Reaching full enrollment is a key milestone for any clinical trial.

Duchenne Muscular Dystrophy (DMD) is an inherited disease that attacks muscle, causing muscle tissue to become weak and degenerate. The disease mainly appears in young boys between the ages of two and three. Patients with DMD often suffer from cardiomyopathy or weakened heart muscle caused by the thickening and hardening of the heart muscle and accumulation of scar tissue. DMD-associated cardiomyopathy is one of the leading causes of patient deaths.

President and CEO of Capricor, Dr. Linda Marban, believes there’s a potential for their CAP-1002 stem cell therapy to help DMD patients suffering from cardiomyopathy. She explained in a press release:

“In DMD, scar tissue progressively aggregates in the heart, leading to a deterioration of cardiac function for which treatment options are limited. We believe CAP-1002 is the only therapeutic candidate in development for the treatment of DMD that has been clinically shown to reduce scar tissue in the damaged heart.”

The Capricor trial was approved by the CIRM Board in March 2016 and since then Capricor has worked quickly to enroll patients in its HOPE-Duchenne trial (HOPE stands for Halt cardiomyopathy progression in Duchenne).

Dr. Marban commented on the trials recent progress:

Linda Marban, CEO of Capricor Therapeutics

Linda Marban, CEO of Capricor Therapeutics

“The rate of patient enrollment into HOPE-Duchenne far surpassed our expectations, signifying the need for therapeutic options as well as the desire of the DMD community to address the heart disease that is highly prevalent in this population. We look forward to announcing top-line six-month results from HOPE-Duchenne in the first quarter of next year, in which we will report on the safety as well as the potential efficacy of CAP-1002.”

Half of the enrolled patients will receive an infusion of the CAP-1002 cardiac cell therapy while the other half will receive regular care without the infusion. Capricor will monitor all these patients to make sure that the cell therapy is well tolerated and doesn’t cause any harm. It will also look for any positive signs that the therapy is benefiting patients using a series of tests that measure changes in scar tissue and heart function.

HOPE is high for this trial to succeed as there is currently no treatment that can successfully reduce the amount of cardiac scar tissue in patients suffering from DMD-associated cardiomyopathy. The Capricor trial is in its early stages, but check in with the Stem Cellar for an update on the safety and efficacy data from this trial in early 2017.


Related links: