Developing a non-toxic approach to bone-crushing cancers

When cancer spreads to the bone the results can be devastating

Battling cancer is always a balancing act. The methods we use – surgery, chemotherapy and radiation – can help remove the tumors but they often come at a price to the patient. In cases where the cancer has spread to the bone the treatments have a limited impact on the disease, but their toxicity can cause devastating problems for the patient. Now, in a CIRM-supported study, researchers at UC Irvine (UCI) have developed a method they say may be able to change that.

Bone metastasis – where cancer starts in one part of the body, say the breast, but spreads to the bones – is one of the most common complications of cancer. It can often result in severe pain, increased risk of fractures and compression of the spine. Tackling them is difficult because some cancer cells can alter the environment around bone, accelerating the destruction of healthy bone cells, and that in turn creates growth factors that stimulate the growth of the cancer. It is a vicious cycle where one problem fuels the other.

Now researchers at UCI have developed a method where they combine engineered mesenchymal stem cells (taken from the bone marrow) with targeting agents. These act like a drug delivery device, offloading different agents that simultaneously attack the cancer but protect the bone.

Weian Zhao; photo courtesy UC Irvine

In a news release Weian Zhao, lead author of the study, said:

“What’s powerful about this strategy is that we deliver a combination of both anti-tumor and anti-bone resorption agents so we can effectively block the vicious circle between cancers and their bone niche. This is a safe and almost nontoxic treatment compared to chemotherapy, which often leaves patients with lifelong issues.”

The research, published in the journal EBioMedicine, has already been shown to be effective in mice. Next, they hope to be able to do the safety tests to enable them to apply to the Food and Drug Administration for permission to test it in people.

The team say if this approach proves effective it might also be used to help treat other bone-related diseases such as osteoporosis and multiple myeloma.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.