Unlocking a key behind why our bones get weaker as we age

Magnified image of a bone with osteoporosis. Photo Courtesy Sciencephoto.com

Getting older brings with it a mixed bag of items. If you are lucky you can get wiser. If you are not so lucky you can get osteoporosis. But while scientists don’t know how to make you wiser, they have gained some new insights into what makes bones weak and so they might be able to help with the osteoporosis.

Around 200 million people worldwide suffer from osteoporosis, a disease that causes bones to become so brittle that in extreme cases even coughing can lead to a fracture.

Scientists have known for some time that the cells that form the building blocks of our skeletons are found in the bone marrow. They are called mesenchymal stem cells (MSCs) and they have the ability to turn into a number of different kinds of cells, including bone or fat. The keys to deciding which direction the MSCs take are things called epigenetic factors, these basically control which genes are switched on or off and in what order. Now researchers from the UCLA School of Dentistry have identified an enzyme that plays a critical role in that process.

The team found that when the enzyme KDM4B is missing in MSCs those cells are more likely to become fat cells rather than bone cells. Over time that leads to weaker bones and more fractures.

In a news release Dr. Cun-Yu Wang, the lead researcher, said: “We know that bone loss comes with age, but the mechanisms behind extreme cases such as osteoporosis have, up until recently, been very vague.”

To see if they were on the right track the team created a mouse model that lacked KDM4B. Just as they predicted the MSCs in the mouse created more fat than bone, leading to weaker skeletons.

They also looked at mice who were placed on a high fat diet – something known to increase bone loss and weaker bones in people – and found that the diet seemed to reduce KDM4B which in turn produced weaker bones.

In the news release Dr. Paul Krebsbach, Dean of the UCLA School of Dentistry, said the implications for the research are enormous. “The work of Dr. Wang, his lab members and collaborators provides new molecular insight into the changes associated with skeletal aging. These findings are an important step towards what may lead to more effective treatment for the millions of people who suffer from bone loss and osteoporosis.”

The study is published in the journal Cell Stem Cell.

Developing a non-toxic approach to bone-crushing cancers

When cancer spreads to the bone the results can be devastating

Battling cancer is always a balancing act. The methods we use – surgery, chemotherapy and radiation – can help remove the tumors but they often come at a price to the patient. In cases where the cancer has spread to the bone the treatments have a limited impact on the disease, but their toxicity can cause devastating problems for the patient. Now, in a CIRM-supported study, researchers at UC Irvine (UCI) have developed a method they say may be able to change that.

Bone metastasis – where cancer starts in one part of the body, say the breast, but spreads to the bones – is one of the most common complications of cancer. It can often result in severe pain, increased risk of fractures and compression of the spine. Tackling them is difficult because some cancer cells can alter the environment around bone, accelerating the destruction of healthy bone cells, and that in turn creates growth factors that stimulate the growth of the cancer. It is a vicious cycle where one problem fuels the other.

Now researchers at UCI have developed a method where they combine engineered mesenchymal stem cells (taken from the bone marrow) with targeting agents. These act like a drug delivery device, offloading different agents that simultaneously attack the cancer but protect the bone.

Weian Zhao; photo courtesy UC Irvine

In a news release Weian Zhao, lead author of the study, said:

“What’s powerful about this strategy is that we deliver a combination of both anti-tumor and anti-bone resorption agents so we can effectively block the vicious circle between cancers and their bone niche. This is a safe and almost nontoxic treatment compared to chemotherapy, which often leaves patients with lifelong issues.”

The research, published in the journal EBioMedicine, has already been shown to be effective in mice. Next, they hope to be able to do the safety tests to enable them to apply to the Food and Drug Administration for permission to test it in people.

The team say if this approach proves effective it might also be used to help treat other bone-related diseases such as osteoporosis and multiple myeloma.

From organs to muscle tissue: how stem cells are being used in 3D

A Sunday Afternoon on the Island of La Grande Jatte by Georges-Pierre Seurat

When most people think of stem cells, they might conjure up an image of small dots under a microscope. It is hard to imagine these small specs being applied to three-dimensional structures. But like a pointillism painting, such as A Sunday Afternoon on the Island of La Grande Jatte by Georges-Pierre Seurat, stem cells can be used to help build things never thought possible. Two studies demonstrate this concept in very different ways.

MIT engineers have designed coiled “nanoyarn,” shown as an artist’s interpretation here. The twisted fibers are lined with living cells and may be used to repair injured muscles and tendons while maintaining their flexibility. Image by Felice Frankel

A study at MIT used nanofiber coated with muscle stem cells and mesenchymal stem cells in an effort to provide a flexible range of motion for these stem cells. Hundreds of thousands of nanofibers were twisted, resembling yarn and rope, in order to mimic the pattern found in tendons and muscle tissue throughout the body. The researchers at MIT found that the yarn like structure of the nanofibers keep the stem cells alive and growing, even as the team stretched and bent the fibers multiple times.

Normally, when a person injures these types of tissues, particularly around a major joint such as the shoulder or knee, it require surgery and weeks of limited mobility to heal properly. The MIT team hopes that their technology could be applied toward treating the site of injury while maintaining range of motion as the newly applied stem cells continue to grow to replace the injured tissue.

In an article, Dr. Ming Guo, assistant professor of mechanical engineering at MIT and one of the authors of the study, was quoted as saying,

“When you repair muscle or tendon, you really have to fix their movement for a period of time, by wearing a boot, for example. With this nanofiber yarn, the hope is, you won’t have to wearing anything like that.”

Their complete findings were published in the Proceedings of the National Academy of Sciences (PNAS).

Researchers in Germany have created transparent human organs using a new technology that could pave the way to print three-dimensional body parts such as kidneys for transplants. Above, Dr. Ali Ertuerk inspects a transparent human brain.
Photo courtesy of Reuters.

In a separate study, researchers in Germany have successfully created transparent human organs, paving the way to print three-dimensional body parts. Dr. Ali Erturk at Ludwig Maximilians University in Munich, with a team of scientists, developed a technique to create a detailed blueprint of organs, including blood vessels and every single cell in its specific location. These directions were then used to print a scaffold of the organ. With the help of a 3D printer, stem cells, acting like ink in a printer, were injected into the correct positions to make the organ functional.

Previously, 3D-printed organs lacked detailed cellular structures because they were based on crude images from computer tomography or MRI machines. This technology has now changed that.

In an article, Dr. Erturk is quoted as saying,

“We can see where every single cell is located in transparent human organs. And then we can actually replicate exactly the same, using 3D bioprinting technology to make a real functional organ. Therefore, I believe we are much closer to a real human organ for the first time now.”

Mechanical forces are the key to speedy recovery after blood cancer treatment

MIT-Stem-Cell-Mechanics_0

Mesenchymal stem cells grown on a surface with specialized mechanical properties. Image courtesy of Krystyn Van Vliet at MIT.

Blood cancers, such as leukemia and lymphoma, are projected to be responsible for 10% of all new cancer diagnoses this year. These types of cancers are often treated by killing the patient’s bone marrow (the site of blood cell manufacturing), with a treatment called irradiation. While effective for ridding the body of cancerous cells, this treatment also kills healthy blood cells. Therefore, for a time after the treatment, patients are particularly vulnerable to infections, because the cellular components of the immune system are down for the count.

Now scientists at MIT have devised a method to make blood cells regenerate faster and  minimize the window for opportunistic infections.

Using multipotent stem cells (stem cells that are able to become multiple cell types) grown on a new and specialized surface that mimics bone marrow, the investigators changed the stem cells into different types of blood cells. When transplanted into mice that had undergone irradiation, they found that the mice recovered much more quickly compared to mice given stem cells grown on a more traditional plastic surface that does not resemble bone marrow as well.

This finding, published in the journal Stem Cell Research and Therapy, is particularly revolutionary, because it is the first time researchers have observed that mechanical properties can affect how the cells differentiate and behave.

The lead author of the study attributes the decreased recovery time to the type of stem cell that was given to mice compared to what humans are normally given after irradiation. Humans are given a stem cell that is only able to become different types of blood cells. The mice in this study, however, were give a stem cell that can become many different types of cells such as muscle, bone and cartilage, suggesting that these cells somehow changed the bone marrow environment to promote a more efficient recovery. They attributed a large part of this phenomenon to a secreted protein call ostepontin, which has previously been describe in activating the cells of the immune system.

In a press release, Dr. Viola Vogel, a scientist not related to study, puts the significance of these findings in a larger context:

“Illustrating how mechanopriming of mesenchymal stem cells can be exploited to improve on hematopoietic recovery is of huge medical significance. It also sheds light onto how to utilize their approach to perhaps take advantage of other cell subpopulations for therapeutic applications in the future.”

Dr. Krystyn Van Vliet, explains the potential to expand these findings beyond the scope of just blood cancer treatment:

“You could imagine that by changing their culture environment, including their mechanical environment, MSCs could be used for administration to target several other diseases such as Parkinson’s disease, rheumatoid arthritis, and others.”

 

A stepping stone for bringing stem cell therapy to patients with ALS

ALS Picture1

Imagine being told that you have a condition that gradually causes you to lose the ability to control your body movements, from picking up a pencil to walking to even breathing. Such is the reality for the nearly 6,000 people who are diagnosed with amyotrophic lateral sclerosis (ALS) every year, in the United States alone.

ALS, also known as Lou Gehrig’s disease, is a neurodegenerative disease that causes the degradation of motor neurons, or nerves that are responsible for all voluntary muscle movements, like the ones mentioned above. It is a truly devastating disease with a particularly poor prognosis of two to five years from the time of diagnosis to death. There are only two approved drugs for ALS and these do not stop it but only slow progression of the disease; and even then only for some patients, not all.

A ray of hope for such a bleak treatment landscape, has been the advent of stem cell therapy options over the past decade. Of particular excitement is the recent discovery made Nasser Aghdami’s group at the Royan Institute for Stem Cell Biology and Technology in Iran.

Two small Phase I clinical trials detailed in Cell Journal demonstrated that injecting mesenchymal stem cells (MSCs), derived from the patient’s own bone marrow, was safe when administered via injection into the bloodstream or the spinal cord. Previous studies had shown that MSCs both revived motor neurons and extended the lifespan in a rodent model of the disease.

In humans, many studies have shown that MSCs taken from bone marrow are safe for use in humans, but these studies have disagreed about whether injection via the bloodstream or spinal cord route is the most effective way to deliver the therapy. This report confirms that both routes of administration are safe as no adverse clinical events were observed for either group throughout the study time frame.

While an important stepping stone, there is still a long way to go. For example, while no adverse clinical events were observed in either group, the overall ALS-FRS score, a clinical scale to determine ALS disease progression, worsened in all patients over the course of the study. Whether this was just due to natural progression of the disease, or because of the stem cell treatment is difficult to determine given the small size of the cohort.

One reason the scientists suggest that could explain the disease decline is because the MSCs were taken from the ALS patients themselves, which means these cells were likely not functioning optimally prior to re-introduction into the patient. To remedy this, they hope to test the effect of MSCs taken from healthy donors in both injection routes in the future. They also need a larger cohort of patients to determine whether or not there is a difference in the therapeutic effect of administering stem cells via the two different routes.

While it may seem that the results from this clinical trial are not particularly groundbreaking or innovative, it is important to remember that these incremental improvements through clinical trials are critical for bringing safe and effective therapies to the market. For more information on the different phases of clinical trials, please refer to this video.

CIRM is also funding clinical trials targeting ALS. One is a Phase 1 trial out of Cedars-Sinai Medical Center and another is a Phase 3 trial with the company Brainstorm Cell Therapeutics.

Starving stem cells of oxygen can help build stronger bones

Leach_Kent_BME.2012

J. Kent Leach: Photo courtesy UC Davis

We usually think that starving something of oxygen is going to make it weaker and maybe even kill it. But a new study by J. Kent Leach at UC Davis shows that instead of weakening bone defects, depriving them of oxygen might help boost their ability to create new bone or repair existing bone.

Leach says in the past the use of stem cells to repair damaged or defective bone had limited success because the stem cells often didn’t engraft in the bone or survive long if they did. That was because the cells were being placed in an environment that lacked oxygen (concentration levels in bone range from 3% to 8%) so the cells found it hard to survive.

However, studies in the lab had shown that if you preconditioned mesenchymal stem cells (MSCs), by exposing them to low oxygen levels before you placed them on the injury site, you helped prolong their viability. That was further enhanced by forming the MSCs into three dimensional clumps called spheroids.

Lightbulb goes off

In the  current study, published in Stem Cells, Leach says the earlier spheroid results  gave him an idea:

“We hypothesized that preconditioning MSCs in hypoxic (low oxygen) culture before spheroid formation would increase cell viability, proangiogenic potential (ability to create new blood vessels), and resultant bone repair compared with that of individual MSCs.”

So, the researchers placed one group of human MSCs, taken from bone marrow, in a dish with just 1% oxygen, and another identical group of MSCs in a dish with normal oxygen levels. After three days both groups were formed into spheroids and placed in an alginate hydrogel, a biopolymer derived from brown seaweed that is often used to build cellular cultures.

Seaweed

Brown seaweed

The team found that the oxygen-starved cells lasted longer than the ones left in normal oxygen, and the longer those cells were deprived of oxygen the better they did.

Theory is great, how does it work in practice?

Next was to see how those two groups did in actually repairing bones in rats. Leach says the results were encouraging:

“Once again, the oxygen-deprived, spheroid-containing gels induced significantly more bone healing than did gels containing either preconditioned individual MSCs or acellular gels.”

The team say this shows the use of these oxygen-starved cells could be an effective approach to repairing hard-to-heal bone injuries in people.

“Short‐term exposure to low oxygen primes MSCs for survival and initiates angiogenesis (the development of new blood vessels). Furthermore, these pathways are sustained through cell‐cell signaling following spheroid formation. Hypoxic (low oxygen) preconditioning of MSCs, in synergy with transplantation of cells as spheroids, should be considered for cell‐based therapies to promote cell survival, angiogenesis, and bone formation.”

CIRM & Dr. Leach

While CIRM did not fund this study we have invested more than $1.8 million in another study Dr. Leach is doing to develop a new kind of imaging technology that will help us see more clearly what is happening in bone and cartilage-targeted therapies.

In addition, back in March of 2012, Dr. Leach spoke to the CIRM Board about his work developing new approaches to growing bone.

 

Stories that caught our eye: How dying cells could help save lives; could modified blood stem cells reverse diabetes?; and FDA has good news for patients, bad news for rogue clinics

Gunsmoke

Growing up I loved watching old cowboy movies. Invariably the hero, even though mortally wounded, would manage to save the day and rescue the heroine and/or the town.

Now it seems some stem cells perform the same function, dying in order to save the lives of others.

Researchers at Kings College in London were trying to better understand Graft vs Host Disease (GvHD), a potentially fatal complication that can occur when a patient receives a blood stem cell transplant. In cases of GvHD, the transplanted donor cells turn on the patient and attack their healthy cells and tissues.

Some previous research had found that using bone marrow cells called mesenchymal stem cells (MSCs) had some success in combating GvHD. But it was unpredictable who it helped and why.

Working with mice, the Kings College team found that the MSCs were only effective if they died after being transplanted. It appears that it is only as they are dying that the MSCs engage with the individual’s immune system, telling it to stop attacking healthy tissues. The team also found that if they kill the MSCs just before transplanting them into mice, they were just as effective.

In a news article on HealthCanal, lead researcher Professor Francesco Dazzi, said the next step is to see if this will apply to, and help, people:

“The side effects of a stem cell transplant can be fatal and this factor is a serious consideration in deciding whether some people are suitable to undergo one. If we can be more confident that we can control these lethal complications in all patients, more people will be able to receive this life saving procedure. The next step will be to introduce clinical trials for patients with GvHD, either using the procedure only in patients with immune systems capable of killing mesenchymal stem cells, or killing these cells before they are infused into the patient, to see if this does indeed improve the success of treatment.”

The study is published in Science Translational Medicine.

Genetically modified blood stem cells reverse diabetes in mice (Todd Dubnicoff)

When functioning properly, the T cells of our immune system keep us healthy by detecting and killing off infected, damaged or cancerous cells in our body. But in the case of type 1 diabetes, a person’s own T cells turn against the body by mistakenly targeting and destroying perfectly normal islet cells in the pancreas, which are responsible for producing insulin. As a result, the insulin-dependent delivery of blood sugar to the energy-hungry organs is disrupted leading to many serious complications. Blood stem cell transplants have been performed to treat the disease by attempting to restart the immune system. The results have failed to provide a cure.

Now a new study, published in Science Translational Medicine, appears to explain why those previous attempts failed and how some genetic rejiggering could lead to a successful treatment for type 1 diabetes.

An analysis of the gene activity inside the blood stem cells of diabetic mice and humans reveals that these cells lack a protein called PD-L1. This protein is known to play an important role in putting the brakes on T cell activity. Because T cells are potent cell killers, it’s important for proteins like PD-L1 to keep the activated T cells in check.

Cell based image for t 1 diabetes

Credit: Andrea Panigada/Nancy Fliesler

Researchers from Boston Children’s Hospital hypothesized that adding back PD-L1 may prevent T cells from the indiscriminate killing of the body’s own insulin-producing cells. To test this idea, the research team genetically engineered mouse blood stem cells to produce the PD-L1 protein. Experiments with the cells in a petri dish showed that the addition of PD-L1 did indeed block the attack-on-self activity. And when these blood stem cells were transplanted into a diabetic mouse strain, the disease was reversed in most of the animals over the short term while a third of the mice had long-lasting benefits.

The researchers hope this targeting of PD-L1 production – which the researchers could also stimulate with pharmacological drugs – will contribute to a cure for type 1 diabetes.

FDA’s new guidelines for stem cell treatments

Gottlieb

FDA Commissioner Scott Gottlieb

Yesterday Scott Gottlieb, the Commissioner at the US Food and Drug Administration (FDA), laid out some new guidelines for the way the agency regulates stem cells and regenerative medicine. The news was good for patients, not so good for clinics offering unproven treatments.

First the good. Gottlieb announced new guidelines encouraging innovation in the development of stem cell therapies, and faster pathways for therapies, that show they are both safe and effective, to reach the patient.

At the same time, he detailed new rules that provide greater clarity about what clinics can do with stem cells without incurring the wrath of the FDA. Those guidelines detail the limits on the kinds of procedures clinics can offer and what ways they can “manipulate” those cells. Clinics that go beyond those limits could be in trouble.

In making the announcement Gottlieb said:

“To be clear, we remain committed to ensuring that patients have access to safe and effective regenerative medicine products as efficiently as possible. We are also committed to making sure we take action against products being unlawfully marketed that pose a potential significant risk to their safety. The framework we’re announcing today gives us the solid platform we need to continue to take enforcement action against a small number of clearly unscrupulous actors.”

Many of the details in the announcement match what CIRM has been pushing for some years. Randy Mills, our previous President and CEO, called for many of these changes in an Op Ed he co-wrote with former US Senator Bill Frist.

Our hope now is that the FDA continues to follow this promising path and turns these draft proposals into hard policy.

 

CIRM Board invests in three new stem cell clinical trials targeting arthritis, cancer and deadly infections

knee

Arthritis of the knee

Every day at CIRM we get calls from people looking for a stem cell therapy to help them fight a life-threatening or life-altering disease or condition. One of the most common calls is about osteoarthritis, a painful condition where the cartilage that helps cushion our joints is worn away, leaving bone to rub on bone. People call asking if we have something, anything, that might be able to help them. Now we do.

At yesterday’s CIRM Board meeting the Independent Citizens’ Oversight Committee or ICOC (the formal title of the Board) awarded almost $8.5 million to the California Institute for Biomedical Research (CALIBR) to test a drug that appears to help the body regenerate cartilage. In preclinical tests the drug, KA34, stimulated mesenchymal stem cells to turn into chondrocytes, the kind of cell found in healthy cartilage. It’s hoped these new cells will replace those killed off by osteoarthritis and repair the damage.

This is a Phase 1 clinical trial where the goal is primarily to make sure this approach is safe in patients. If the treatment also shows hints it’s working – and of course we hope it will – that’s a bonus which will need to be confirmed in later stage, and larger, clinical trials.

From a purely selfish perspective, it will be nice for us to be able to tell callers that we do have a clinical trial underway and are hopeful it could lead to an effective treatment. Right now the only alternatives for many patients are powerful opioids and pain killers, surgery, or turning to clinics that offer unproven stem cell therapies.

Targeting immune system cancer

The CIRM Board also awarded Poseida Therapeutics $19.8 million to target multiple myeloma, using the patient’s own genetically re-engineered stem cells. Multiple myeloma is caused when plasma cells, which are a type of white blood cell found in the bone marrow and are a key part of our immune system, turn cancerous and grow out of control.

As Dr. Maria Millan, CIRM’s President & CEO, said in a news release:

“Multiple myeloma disproportionately affects people over the age of 65 and African Americans, and it leads to progressive bone destruction, severe anemia, infectious complications and kidney and heart damage from abnormal proteins produced by the malignant plasma cells.  Less than half of patients with multiple myeloma live beyond 5 years. Poseida’s technology is seeking to destroy these cancerous myeloma cells with an immunotherapy approach that uses the patient’s own engineered immune system T cells to seek and destroy the myeloma cells.”

In a news release from Poseida, CEO Dr. Eric Ostertag, said the therapy – called P-BCMA-101 – holds a lot of promise:

“P-BCMA-101 is elegantly designed with several key characteristics, including an exceptionally high concentration of stem cell memory T cells which has the potential to significantly improve durability of response to treatment.”

Deadly infections

The third clinical trial funded by the Board yesterday also uses T cells. Researchers at Children’s Hospital of Los Angeles were awarded $4.8 million for a Phase 1 clinical trial targeting potentially deadly infections in people who have a weakened immune system.

Viruses such as cytomegalovirus, Epstein-Barr, and adenovirus are commonly found in all of us, but our bodies are usually able to easily fight them off. However, patients with weakened immune systems resulting from chemotherapy, bone marrow or cord blood transplant often lack that ability to combat these viruses and it can prove fatal.

The researchers are taking T cells from healthy donors that have been genetically matched to the patient’s immune system and engineered to fight these viruses. The cells are then transplanted into the patient and will hopefully help boost their immune system’s ability to fight the virus and provide long-term protection.

Whenever you can tell someone who calls you, desperately looking for help, that you have something that might be able to help them, you can hear the relief on the other end of the line. Of course, we explain that these are only early-stage clinical trials and that we don’t know if they’ll work. But for someone who up until that point felt they had no options and, often, no hope, it’s welcome and encouraging news that progress is being made.

 

 

Lights, Camera, Stem Cells! How photo-responsive hydrogels can improve stem cell therapies

Watching a movie in IMAX 3D.

These days, going to the movie theater is like riding the wildest rollercoaster at your local theme park. It can be an IMAX 3D, surround sound, vibrating seat experience that makes you feel like you’re living the actual movie.

As the entertainment industry evolves towards more intense, realistic cinematic experiences, scientists are following a similar path towards 3D technologies that will improve stem cell-based therapies for biomedical applications. One such technology is called a hydrogel. Hydrogels are biological materials made of either synthetic polymers or natural molecules that scientists use to simulate the native environment in which cells and tissues develop.

Growing stem cells on a flat surface, such as a culture dish, is like watching a movie in a standard, less immersive 2D theater – the stem cells aren’t in their typical 3D environment where they receive biochemical and physical cues to develop into the appropriate cell types of the tissue they are destined to become.

With hydrogels, scientists can more closely mimic a stem cell’s natural environment, or what is called the “stem cell niche”. A lot of research has been dedicated towards fine-tuning hydrogels in a way that can control how stem cells behave and mature. We’ve blogged on this topic previously, and today we bring you an update on a new type of hydrogel that improves upon current technologies.

Scientists from The Hong Kong University of Science and Technology created photo-responsive or light-sensitive hydrogels that they used to grow human mesenchymal stem cells in 3D cultures. These hydrogels contain a vitamin B12-dependent, photo-responsive protein called CarHC. In the dark, coenzyme B12 binds to CarHC and triggers the protein to self-assemble into polymers that create an elastic hydrogel structure. When exposed to light, B12 is absorbed and can no longer bind CarHC, causing the hydrogel structure to dissolve into a liquid solution.

A hydrogel containing mesenchymal stem cells. (Image courtesy of Harvard Paulson School).

This photo-responsive hydrogel is the equivalent of a light-sensing switch that allows the scientists to capture or release stem cells without damaging them or affecting their viability. Senior author on the study, Dr. Fei Sun, elaborated in an interview with Phys.org,

“The resulting hydrogel composed of physically self-assembled CarHC polymers exhibited a rapid gel-solultion transition on light exposure, which enabled the facile release/recovery of 3T3 fibroblasts and human mesenchymal stem cells (hMSCs) from 3D cultures while maintaining their viability.”

Sun’s team is one of the first to report the development of photo-sensitive “smart” hydrogels for stem cell research applications. Looking forward, Sun believes that their technology will be useful for making “tunable materials” that will aid in the development of stem cell-based therapies.

He concluded,

“Given the growing demand for creating stimuli-responsive “smart” hydrogels, the direct assembly of stimuli-responsive proteins into hydrogels represents a versatile strategy for designing dynamically tunable materials.”

License to heal: UC Davis deal looks to advance stem cell treatment for bone loss and arthritis

Nancy Lane

Wei Yao and Nancy Lane of UC Davis: Photo courtesy UC Davis

There are many challenges in taking even the most promising stem cell treatment and turning it into a commercial product approved by the Food and Drug Administration (FDA). One of the biggest is expertise. The scientists who develop the therapy may be brilliant in the lab but have little experience or expertise in successfully getting their work through a clinical trial and ultimately to market.

That’s why a team at U.C. Davis has just signed a deal with a startup company to help them move a promising stem cell treatment for arthritis, osteoporosis and fractures out of the lab and into people.

The licensing agreement combines the business acumen of Regenerative Arthritis and Bone Medicine (RABOME) with the scientific chops of the UC Davis team, led by Nancy Lane and Wei Yao.

They plan to test a hybrid molecule called RAB-001 which has shown promise in helping direct mesenchymal stem cells (MSCs) – these are cells typically found in the bone marrow and fat tissue – to help stimulate bone growth and increase existing bone mass and strength. This can help heal people suffering from conditions like osteoporosis or hard to heal fractures. RAB-001 has also shown promise in reducing inflammation and so could prove helpful in treating people with inflammatory arthritis.

Overcoming problems

In a news article on the UC Davis website, Wei Yao, said RAB-001 seems to solve a problem that has long puzzled researchers:

“There are many stem cells, even in elderly people, but they do not readily migrate to bone.  Finding a molecule that attaches to stem cells and guides them to the targets we need provides a real breakthrough.”

The UC Davis team already has approval to begin a Phase 1 clinical trial to test this approach on people with osteonecrosis, a disease caused by reduced blood flow to bones. CIRM is funding this work.

The RABOME team also hopes to test RAB-001 in clinical trials for healing broken bones, osteoporosis and inflammatory arthritis.

CIRM solution

To help other researchers overcome these same regulatory hurdles in developing stem cell therapies CIRM created the Stem Cell Center with QuintilesIMS, a leading integrated information and technology-enabled healthcare service provider that has deep experience and therapeutic expertise. The Stem Cell Center will help researchers overcome the challenges of manufacturing and testing treatments to meet FDA standards, and then running a clinical trial to test that therapy in people.