New stem cell technique gives brain support cells a starring role

Gage et al

The Salk team. From left: Krishna Vadodaria, Lynne Moore, Carol Marchetto, Arianna Mei, Fred H. Gage, Callie Fredlender, Ruth Keithley, Ana Diniz Mendes. Photo courtesy Salk Institute

Astrocytes are some of the most common cells in the brain and central nervous system but they often get overlooked because they play a supporting role to the more glamorous neurons (even though they outnumber them around 50 to 1). But a new way of growing those astrocytes outside the brain could help pave the way for improved treatments for stroke, Alzheimer’s and other neurological problems.

Astrocytes – which get their name because of their star shape (Astron – Greek for “star” and “kyttaron” meaning cell) – have a number of key functions in the brain. They provide physical and metabolic support for neurons; they help supply energy and fuel to neurons; and they help with detoxification and injury repair, particularly in terms of reducing inflammation.

Studying these astrocytes in the lab has not been easy, however, because existing methods of producing them have been slow, cumbersome and not altogether effective at replicating their many functions.

Finding a better way

Now a team at the Salk Institute, led by CIRM-funded Professor Fred “Rusty” Gage, has developed a way of using stem cells to create astrocytes that is faster and more effective.

Their work is published in the journal Stem Cell Reports. In a news release, Gage says this is an important discovery:

“This work represents a big leap forward in our ability to model neurological disorders in a dish. Because inflammation is the common denominator in many brain disorders, better understanding astrocytes and their interactions with other cell types in the brain could provide important clues into what goes wrong in disease.”

Stylized microscopy image of an astrocyte (red) and neuron (green). (Salk Institute)

In a step by step process the Salk team used a series of chemicals, called growth factors, to help coax stem cells into becoming, first, generic brain cells, and ultimately astrocytes. These astrocytes not only behaved like the ones in our brain do, but they also have a particularly sensitive response to inflammation. This gives the team a powerful tool in helping develop new treatment to disorders of the brain.

But wait, there’s more!

As if that wasn’t enough, the researchers then used the same technique to create astrocytes from induced pluripotent stem cells (iPSCs) – adult cells, such as skin, that have been re-engineered to have the ability to turn into any other kind of cell in the body. Those man-made astrocytes also showed the same characteristics as natural ones do.

Krishna Vadodaria, one of the lead authors on the paper, says having these iPSC-created astrocytes gives them a completely new tool to help explore brain development and disease, and hopefully develop new treatments for those diseases.

“The exciting thing about using iPSCs is that if we get tissue samples from people with diseases like multiple sclerosis, Alzheimer’s or depression, we will be able to study how their astrocytes behave, and how they interact with neurons.”

Advertisements

One thought on “New stem cell technique gives brain support cells a starring role

  1. Very interesting article! What fascinated me the most was the iPSCs. If science could find a way to take ordinary adult cells and transform them into fully functional nerve cells, humans could finally have a fighting chance against brain injuries. Since astrocytes wrap around the presynaptic terminal of a group of axons, improvements involving astrocytes could have benefits ranging from an increased efficiency in brain functions to a more likely chance of damaged neurons being able to relay their emergency requests for help.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s