Building a better brain organoid

One of the reasons why it’s so hard to develop treatments for problems in the brain – things like Alzheimer’s, autism and schizophrenia – is that you can’t do an autopsy of a living brain to see what’s going wrong. People tend to object. To get around that, scientists have used stem cells to create models of what’s happening inside the brain. They’re good, but they have their limitations. Now a team at the Salk Institute for Biological Studies has found a way to create a better brain model, and hopefully a faster route to developing new treatments.

For a few years now, scientists have been able to take skin cells from patients with neurodegenerative disorders and turn them into neurons, the kind of brain cell affected by these different diseases. They grow these cells in the lab and turn them into clusters of cells, so-called brain “organoids”, to help us better understand what’s happening inside the brain and even allow us to test medications on them to see if those treatments can help ease some symptoms.

Human-organoid-tissue-green-grafted-into-mouse-tissue.-Neurons-are-labeled-with-red-dye.

Human organoid tissue (green) grafted into mouse tissue. Neurons are labeled with red. Credit: Salk Institute

But those models don’t really capture the complexity of our brains – how could they – and so only offer a glimpse into what’s happening inside our skulls.

Now the team at Salk have developed a way of transplanting these organoids into mouse brains, giving them access to oxygen and nutrients that can help them not only survive longer but also display more of the characteristics found in the human brain.

In a news release, CIRM Grantee and professor at Salk’s Laboratory of Genetics, Rusty Gage said this new approach gives researchers a powerful new tool:

“This work brings us one step closer to a more faithful, functional representation of the human brain and could help us design better therapies for neurological and psychiatric diseases.”

The transplanted human brain organoids showed plenty of signs that they were becoming engrafted in the mouse brain:

  • They had blood vessels form in them and blood flowing through them
  • They formed neurons
  • They formed other brain support cells called astrocytes

They also used a series of imaging techniques to confirm that the neurons in the organoid were not just connecting but also sending signals, in essence, communicating with each other.

Abed AlFattah Mansour, a Salk research associate and the paper’s first author, says this is a big accomplishment.

“We saw infiltration of blood vessels into the organoid and supplying it with blood, which was exciting because it’s perhaps the ticket for organoids’ long-term survival. This indicates that the increased blood supply not only helped the organoid to stay healthy longer, but also enabled it to achieve a level of neurological complexity that will help us better understand brain disease.”

A better understanding of what’s going wrong is a key step in being able to develop new treatments to fix the problem.

The study is published in the journal Nature Biotechnology.

CIRM has a double reason to celebrate this work. Not only is the team leader, Rusty Gage, a CIRM grantee but one of the Salk team, Sarah Fernandes, is a former intern in the CIRM Bridges to Stem Cell Research program.

Gage-Natbiotech-press-release

From left: Sarah Fernandes, Daphne Quang, Stephen Johnston, Sarah Parylak, Rusty Gage, Abed AlFattah Mansour, Hao Li Credit: Salk Institute

New stem cell technique gives brain support cells a starring role

Gage et al

The Salk team. From left: Krishna Vadodaria, Lynne Moore, Carol Marchetto, Arianna Mei, Fred H. Gage, Callie Fredlender, Ruth Keithley, Ana Diniz Mendes. Photo courtesy Salk Institute

Astrocytes are some of the most common cells in the brain and central nervous system but they often get overlooked because they play a supporting role to the more glamorous neurons (even though they outnumber them around 50 to 1). But a new way of growing those astrocytes outside the brain could help pave the way for improved treatments for stroke, Alzheimer’s and other neurological problems.

Astrocytes – which get their name because of their star shape (Astron – Greek for “star” and “kyttaron” meaning cell) – have a number of key functions in the brain. They provide physical and metabolic support for neurons; they help supply energy and fuel to neurons; and they help with detoxification and injury repair, particularly in terms of reducing inflammation.

Studying these astrocytes in the lab has not been easy, however, because existing methods of producing them have been slow, cumbersome and not altogether effective at replicating their many functions.

Finding a better way

Now a team at the Salk Institute, led by CIRM-funded Professor Fred “Rusty” Gage, has developed a way of using stem cells to create astrocytes that is faster and more effective.

Their work is published in the journal Stem Cell Reports. In a news release, Gage says this is an important discovery:

“This work represents a big leap forward in our ability to model neurological disorders in a dish. Because inflammation is the common denominator in many brain disorders, better understanding astrocytes and their interactions with other cell types in the brain could provide important clues into what goes wrong in disease.”

Stylized microscopy image of an astrocyte (red) and neuron (green). (Salk Institute)

In a step by step process the Salk team used a series of chemicals, called growth factors, to help coax stem cells into becoming, first, generic brain cells, and ultimately astrocytes. These astrocytes not only behaved like the ones in our brain do, but they also have a particularly sensitive response to inflammation. This gives the team a powerful tool in helping develop new treatment to disorders of the brain.

But wait, there’s more!

As if that wasn’t enough, the researchers then used the same technique to create astrocytes from induced pluripotent stem cells (iPSCs) – adult cells, such as skin, that have been re-engineered to have the ability to turn into any other kind of cell in the body. Those man-made astrocytes also showed the same characteristics as natural ones do.

Krishna Vadodaria, one of the lead authors on the paper, says having these iPSC-created astrocytes gives them a completely new tool to help explore brain development and disease, and hopefully develop new treatments for those diseases.

“The exciting thing about using iPSCs is that if we get tissue samples from people with diseases like multiple sclerosis, Alzheimer’s or depression, we will be able to study how their astrocytes behave, and how they interact with neurons.”

Salk scientists explain why brain cells are genetically diverse

twin_boys

I’ve always wondered why some sets of genetically identical twins become not so identical later in life. Sometimes they differ in appearance. Other times, one twin is healthy while the other is plagued with a serious disease. These differences can be explained by exposure to different environmental factors over time, but there could also be a genetic explanation involving our brains.

The brain is composed of approximately 100 billion cells called neurons, each with a DNA blueprint that contains instructions that determine the function of these neurons in the brain. Originally it was thought that all cells, including neurons, have the same DNA. But more recently, scientists discovered that the brain is genetically diverse and that neurons within the same brain can have slightly different DNA blueprints, which could give them slightly different functions.

Jumping genes and genetic diversity

gage-web

Fred “Rusty” Gage: Photo courtesy Salk Institute

Why and how neurons have differences in their DNA are questions that Salk Institute professor Fred Gage has pursued for more than a decade. In 2005, his lab discovered a mechanism during neural development that causes differences in the DNA of neurons. As a brain stem cell develops into a neuron, long interspersed nuclear elements (L1s), which are small pieces of DNA, copy and paste themselves, seemingly at random, throughout a neuron’s genome.

These elements were originally dubbed “jumping genes” because of their ability to hop around and insert themselves into DNA. It turns out that L1s do more than copy and paste themselves to create changes in DNA, they also can delete chunks of DNA. In a CIRM-funded study published this week in the journal Nature Neuroscience, Gage and colleagues at the Salk Institute reported new insights into L1 activity and how it creates genetic diversity in the brain.

Copy, paste, delete

Gage and his team had clues that L1s can cause DNA deletions in neurons back in 2013. They used a technique called single-cell sequencing to record the sequence of individual neuronal genomes and saw that some of their genomes had large sections of DNA added or missing.

They thought that L1s could be the reason for these insertions and deletions, but didn’t have proof until their current study, which used an improved method to identify areas of the neuronal genome modified by L1s. This method, combined with a computer algorithm that can easily tell the difference between various types of L1 modifications, revealed that areas of the genome with L1s were susceptible to DNA cutting caused by enzymes that home in on the L1 sequences. These breaks in the DNA then cause the observed deletions.

Gage explained their findings in a news release:

“In 2013, we discovered that different neurons within the same brain have various complements of DNA, suggesting that they function slightly differently from each other even within the same person. This recent study reveals a new and surprising form of variation that will help us understand the role of L1s, not only in healthy brains but in those affected by schizophrenia and autism.”

Jennifer Erwin, first author on the study, further elaborated:

“The surprising part was that we thought all L1s could do was insert into new places. But the fact that they’re causing deletions means that they’re affecting the genome in a more significant way,” says Erwin, a staff scientist in Gage’s group.”

Insights into brain disorders

It’s now known that L1s are important for the brain’s genetic diversity, but Gage also believes that L1s could play a role in causing brain disorders like schizophrenia and autism where there is heightened L1 activity in the neurons of these patients. In future work, Gage and his team will study how L1s can cause changes in genes associated with schizophrenia and autism and how these changes can effect brain function and cause disease.