Keeping intestinal stem cells in their prime

Gut stem cells (green) in the small intestine of a mouse.

The average length of the human gut is 25 feet long. That’s equivalent to four really tall people or five really short people lined up head to toe. Intestinal stem cells have the fun job of regenerating and replacing ALL the cells that line the gut. Therefore, it’s important for these stem cells to be able to self-renew, a process that replenishes the stem cell population. If this important biological process is disrupted, the intestine is at risk for diseases like inflammatory bowel disease and cancer.

This week, Stanford Medicine researchers published new findings about the biological processes responsible for regulating the regenerative capacity of intestinal stem cells. Their work, which was partially funded by CIRM, was published in the journal Nature.

Priming gut stem cells to self-renew

Scientists know that the self-renewal of intestinal stem cells is very important for a happy, functioning gut, but the nuances of what molecules and signaling pathways regulate this process have yet to be figured out. The Stanford team, led by senior author and Stanford Professor Dr. Calvin Kuo, studied two signaling pathways, Wnt and R-Spondin, that are involved in the self-renewal of intestinal stem cells in mice.

Dr. Calvin Kuo, Stanford Medicine.

“The cascade of events comprising the Wnt signaling pathway is crucial to stem cell self-renewal,” Dr. Kuo explained in an email exchange. “The Wnt pathway can be induced by either hormones classified as “Wnts” or “R-spondins”.  However, it is not known if Wnts or R-spondins cooperate to induce Wnt signaling, and if these Wnts and R-spondins have distinct functions or if they can mutually substitute for each other.   We explored how Wnts and R-spondins might cooperate to regulate intestinal stem cells – which are extremely active and regenerate the 25-foot lining of the human intestine every week.”

The team used different reagents to activate or block Wnt or R-spondin signaling and monitored the effects on intestinal stem cells. They found that both were important for the self-renewal of intestinal stem cells, but that they played different roles.

“Our work revealed that Wnts and R-spondins are not equivalent and that they have very distinct functions even though they both trigger the Wnt signaling cascade,” said Dr. Kuo. “Both Wnts and R-spondins are required to maintain intestinal stem cells.  However, Wnts perform more of a subservient “priming” function, where they prepare intestinal stem cells for the action of R-spondin, which is the active catalyst for inducing intestinal stem cells to divide.”

The authors believe that this multi-step regulation, involving priming and self-renewal factors could apply to stem cell systems in other organs and tissues in the body. Some of the researchers on this study including Dr. Kuo are pursuing this idea through a new company called Surrozen, which produces artificial bioengineered Wnt molecules that don’t require activation like natural Wnt molecules. These Wnt molecules were used in the current study and are explained in more detail in a separate Nature article published at the same time.

The company believes that artificial Wnts will be useful for understanding stem cell biology and potentially for therapeutic applications. Dr. Kuo explained,

“The new surrogate Wnts are easily produced and can circulate in the bloodstream, unlike natural Wnts.  There may be medical applications of these bioengineered Wnt surrogates in stimulating various stem cell compartments of the body, given the wide range of stem cells that are governed by natural Wnts.”

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s