Circular RNAs: the Mind-Boggling Dark Matter of the Human Genome

We were just a few hours into the 2016 annual meeting of the International Society for Stem Cell Research (ISSCR) yesterday afternoon and my mind was already blown away. Pier Paolo Pandolfi of the Beth Israel Deaconess Medical Center at Harvard, spoke during the first plenary session about circular RNAs, which he dubbed, “the mind-boggling dark matter of the human genome” because their existence wasn’t confirmed until just four years ago.

To introduce the topic, Pandolfi compared human DNA to that of bacteria. Both species contain stretches of DNA sequence called genes that contain the instructions for making proteins which collectively form our bodies. Each gene is first transcribed into messenger RNA (mRNA) which in turn is translated into a protein.

Iceberg

Our DNA contains 20,000 genes. But that genetic material is just the tip of the iceberg.

But with the ability to sequence all the mRNA transcripts of an organism, or its transcriptome, came a startling fact about how differently our genetic structure is organized compared to bacteria. It turns out that 88% of DNA sequence in bacteria make up genes that code for proteins but only 2% of human DNA sequence directly codes for proteins. So what’s going with the other 98%? Scientist typically call this 98% chunk of the genome “regulatory DNA” because it contains sequences that act as control switches for turning genes on or off. But Pandolfi explained that more recent studies suggest that a whopping 70% of our genome (maybe even 95%) is transcribed into RNA but those RNA molecules just don’t get translated into protein.

 

One type of this “non-coding” RNA which we’ve blogged about plenty of times is called microRNA (miRNA). So far, about 5,000 human miRNAs have been identified compared to the 20,000 messenger RNAs that code for proteins. But by far the most abundant non-coding RNA in our transcriptome is the mysterious circular RNA (circRNA) with at least 100,000 different transcripts. circRNA was first observed as cellular structures in the 1980’s via electronic microscope images. Then in the 1990’s a scientist published DNA sequencing data suggesting the existence of circRNA. But the science community at that time panned the results, discrediting it as merely background noise of the experiments.

Pandolfi_2

Pier Paolo Pandolfi
Image: Beth Israel Deaconess Medical Center

But four years ago, the circRNAs were directly sequenced and their existence confirmed. The circRNAs are formed when messenger RNA goes through a well-described trimming process of its sequence. Some of the excised pieces of RNA form into the circular RNAs. It would seem that these circRNAs are just throw away debris but Pandolfi’s lab has found evidence that they directly play a role in cellular functions and even cancer.

His team studies a gene called Pokemon which, when genetically “knocked out” or removed from a mouse’s genome, leads to cancer. Now, it turns out this knockout not only removes the Pokemon protein but also a Pokemon circRNA (circPok). When the lab added back just the Pokemon gene, as you might expect, it acted to suppress cancer in the mice. But when just the circPok was added back, stunningly, it increased the formation of cancer in the mice. Given that genetic knockouts are one of the most pervasive techniques in biomedical science, a closer look at circRNAs that may have been overlooked in all of those results is clearly warranted.

Though this finding is somewhat scary in the fact that it’s a whole aspect of our genome that we’ve been unaware of, one fortunate aspect of circRNA is that they all carry a particular sequence which could be used as a target for a new class of drugs.

This data may extend to stem cells as well. We know that microRNAs have critical roles in regulating the maturation of stem cells into specialized cell types. Since circRNAs are thought to act by competing microRNA, it may not be long before we learn about circRNA’s role in stem cell function.

The other speakers at the first plenary session of the ISSCR annual meeting all gave high caliber talks. Luckily, Paul Knoepfler live blogged on two of those presentations. Here are the links:

 

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s