How you derive embryonic stem cells matters

A scientist named James Thompson was the first to successfully culture human embryonic stem cells in 1998. He didn’t know it then, but his technique isolated a specific type of embryonic stem cell (ESC) that had a “primed pluripotent state”.

There are actually two phases of pluripotency: naïve and primed. Naïve ESCs occur a step earlier in embryonic development (during the beginning of the blastocyst stage), and the naïve state can be thought of as the ground state of pluripotency. Primed ESCs on the other hand are more mature and while they can still become every cell type in the body, they are somewhat less flexible compared to naïve ESCs. If you want to learn more about naïve and primed ESCs, you can refer to this scientific review.

Scientists have developed methods to derive both naïve and primed human ESCs in culture and are attempting to use these cells for biomedical applications. However, a recent CIRM-funded study published in Cell Stem Cell, calls into question the quality of ESCs produced using these culturing methods and could change how lab-derived stem cells are used for stem cell transplant therapies and regenerative medicine.

Primed human embryonic stem cells (purple) identified by a green stem cell surface marker. (Image courtesy of UCLA)

Primed human embryonic stem cells (purple) identified by a green stem cell surface marker. (Image courtesy of UCLA)

Culturing methods erase stem cell memory

UCLA scientists discovered that some of the culturing methods used to propagate naïve ESCs actually erase important biochemical signatures that are essential for maintaining ESCs in a naïve state and for passing down genetic information from the embryo to the developing fetus.

When they studied naïve ESCs in culture, they focused on a naturally occurring process called DNA methylation. It controls which genes are active and which are silenced by adding chemical tags to certain stretches of DNA called promoters, which are responsible for turning genes on or off. This process is critical for normal development and keeping cells functional and healthy in adults.

UCLA scientists compared the DNA methylation state of the mature human blastocyst – the early-stage embryo and where naïve ESCs come from – to the methylation state of naïve ESCs generated in culture. They found that the methylation patterns in the blastocyst six days after fertilization were the same as the patterns found in the egg that it developed from. This discovery is contrary to previous beliefs that the DNA methylation patterns in eggs are lost a few hours after fertilization.

Amander Clark, the study’s lead author and UCLA professor explained in a UCLA news release:

Amander+Clark+headshot_68295d00-2717-4d5c-99f3-f791e6b6ebcf-prv

Amandar Clark, UCLA

“We know that the six days after fertilization is a very critical time in human development, with many changes happening within that period. It’s not clear yet why the blastocyst retains methylation during this time period or what purpose it serves, but this finding opens up new areas of investigation into how methylation patterns built in the egg affect embryo quality and the birth of healthy children.”

The group also discovered cultured naïve ESCs lack these important DNA methylation patterns seen in early-stage blastocysts. Current methods to derive naïve ESCs wipe their memory leaving them in an unstable state. This is an issue for researchers because some prefer the use of naïve ESCs over primed ESCs for their studies because naïve ESCs have more potential for experimentation.

“In the past three years, naïve stem cells have been touted as potentially superior to primed cells,” Clark said. “But our data show that the naïve method for creating stem cells results in cells that have problems, including the loss of methylation from important places in DNA. Therefore, until we have a way to create more stable naïve embryonic stem cells, the embryonic stem cells created for the purposes of regenerative medicine should be in a primed state in order to create the highest-quality cells for differentiation.”

How you derive embryonic stem cells matters

Now that this culturing problem has been identified, the UCLA group plans to develop new and improved methods for generating naïve ESCs in culture such that they retain their DNA methylation patterns and are more stable.

The hope from this research is that scientists will be able to produce stem cells that more closely resemble their counterparts in the developing human embryo and will be better suited for stem cell therapies and regenerative medicine applications.


Related Links:

Advertisements

One thought on “How you derive embryonic stem cells matters

  1. Si tutte parole e propositi eccellenti ma noi abbiamo bisogno di sostanza e concretezza e in fretta…il tempo stringe e la patologia avanza ..

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s