Study Identifies Safer Stem Cell Therapies

To reject or not reject, that is the question facing the human immune system when new tissue or cells are transplanted into the body.

Stem cell-therapy promises hope for many debilitating diseases that currently have no cures. However, the issue of immune rejection has prompted scientists to carefully consider how to develop safe stem cell therapies that will be tolerated by the human immune system.

Before the dawn of induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs) were suggested as a potential source for transplantable cells and tissue. However, ESCs run into a couple of issues, including their origin, and the fact that ESC-derived cells likely would be rejected when transplanted into most areas of a human due to differences in genetic backgrounds.

The discovery of iPSCs in the early 2000’s gave new hope to the field of stem cell therapy. By generating donor cells and tissue from a patient’s own iPSCs, transplanting those cells/tissue back into the same individual shouldn’t – at least theoretically – cause an immune reaction. This type of transplantation is called “autologous” meaning that the stem cell-derived cells have the same genetic background as the person.

Unfortunately, scientists have run up against a roadblock in iPSC-derived stem cell therapy. They discovered that even cells derived from a patient’s own iPSCs can cause an immune reaction when transplanted into that patient. The answers as to why this occurs remained largely unanswered until recently.

In a paper published last week in Cell Stem Cell, scientists from the University of California, San Diego (UCSD) reported that different mature cell types derived from human iPSCs have varying immunogenic effects (the ability to cause an immune reaction) when transplanted into “humanized” mice that have a human immune system. This study along with the research conducted to generate the humanized mice was funded by CIRM grants (here, here).

In this study, retinal pigment epithelial cells (RPE) and skeletal muscle cells (SMC) derived from human iPSCs were transplanted into humanized mice. RPEs were tolerated by the immune system while SMCs were rejected. (Adapted from Zhao et al. 2015)

Scientists took normal mice and replaced their immune system with a human one. They then took human iPSCs generated from the same human tissue used to generate the humanized mice and transplanted different cell types derived from the iPSCs cells into these mice.

Because they were introducing cells derived from the same source of human tissue that the mouse’s immune system was derived from, in theory, the mice should not reject the transplant. However, they found that many of the transplants did indeed cause an immune reaction.

Interestingly, they found that certain mature cell types derived from human iPSCs created a substantial immune reaction while other cell types did not. The authors focused on two specific cell types, smooth muscle cells (SMC) and retinal pigment epithelial cells (RPE), to get a closer look at what was going on.

iPSC-derived smooth muscle cells created a large immune response when transplanted into humanized mice. However, when they transplanted iPSC-derived retinal epithelial cells (found in the retina of the eye), they didn’t see the same immune reaction. As a control, they transplanted RPE cells made from human ESCs, and as expected, they saw an immune response to the foreign ESC-derived RPE cells.

RPE_1

iPSC derived RPE cells (green) do not cause an immune reaction (red) after transplantation into humanized mice while H9 embryonic stem cell derived RPE cells do. (Zhao et al. 2015)

When they looked further to determine why the humanized mice rejected the muscle cells but accepted the retinal cells, they found that SMCs had a different gene expression profile and higher expression of immunogenic molecules. The iPSC-derived RPE cells had low expression of these same immunogenic molecules, which is why they were well tolerated in the humanized mice.

Results from this study suggest that some cell types generated from human iPSCs are safer for transplantation than others, an issue which can be addressed by improving the differentiation techniques used to produce mature cells from iPSCs. This study also suggests that iPSC-derived RPE cells could be a safe and promising stem cell therapy for the treatment of eye disorders such as age-related macular degeneration (AMD). AMD is a degenerative eye disease that can cause vision impairment or blindness and usually affects older people over the age of 50. Currently there is no treatment for AMD, a disease that affects approximately 50 million people around the world. (However there is a human iPSC clinical trial for AMD out of the RIKEN Center for Developmental Biology in Japan that has treated one patient but is currently on hold due to safety issues.)

The senior author on this study, Dr. Yang Xu, commented on the importance of this study in relation to AMD in a UCSD press release:

Dr. Yang Xu

Dr. Yang Xu

Immune rejection is a major challenge for stem cell therapy. Our finding of the lack of immune rejection of human iPSC-derived retinal pigment epithelium cells supports the feasibility of using these cells for treating macular degeneration. However, the inflammatory environment associated with macular degeneration could be an additional hurdle to be overcome for the stem cell therapy to be successful.

Xu makes an important point by acknowledging that iPSC-derived RPE cells aren’t a sure bet for curing AMD just yet. More research needs to be done to address other issues that occur during AMD in order for this type of stem cell therapy to be successful.

 


Related Links:

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s