Stories that caught our eye: How dying cells could help save lives; could modified blood stem cells reverse diabetes?; and FDA has good news for patients, bad news for rogue clinics

Gunsmoke

Growing up I loved watching old cowboy movies. Invariably the hero, even though mortally wounded, would manage to save the day and rescue the heroine and/or the town.

Now it seems some stem cells perform the same function, dying in order to save the lives of others.

Researchers at Kings College in London were trying to better understand Graft vs Host Disease (GvHD), a potentially fatal complication that can occur when a patient receives a blood stem cell transplant. In cases of GvHD, the transplanted donor cells turn on the patient and attack their healthy cells and tissues.

Some previous research had found that using bone marrow cells called mesenchymal stem cells (MSCs) had some success in combating GvHD. But it was unpredictable who it helped and why.

Working with mice, the Kings College team found that the MSCs were only effective if they died after being transplanted. It appears that it is only as they are dying that the MSCs engage with the individual’s immune system, telling it to stop attacking healthy tissues. The team also found that if they kill the MSCs just before transplanting them into mice, they were just as effective.

In a news article on HealthCanal, lead researcher Professor Francesco Dazzi, said the next step is to see if this will apply to, and help, people:

“The side effects of a stem cell transplant can be fatal and this factor is a serious consideration in deciding whether some people are suitable to undergo one. If we can be more confident that we can control these lethal complications in all patients, more people will be able to receive this life saving procedure. The next step will be to introduce clinical trials for patients with GvHD, either using the procedure only in patients with immune systems capable of killing mesenchymal stem cells, or killing these cells before they are infused into the patient, to see if this does indeed improve the success of treatment.”

The study is published in Science Translational Medicine.

Genetically modified blood stem cells reverse diabetes in mice (Todd Dubnicoff)

When functioning properly, the T cells of our immune system keep us healthy by detecting and killing off infected, damaged or cancerous cells in our body. But in the case of type 1 diabetes, a person’s own T cells turn against the body by mistakenly targeting and destroying perfectly normal islet cells in the pancreas, which are responsible for producing insulin. As a result, the insulin-dependent delivery of blood sugar to the energy-hungry organs is disrupted leading to many serious complications. Blood stem cell transplants have been performed to treat the disease by attempting to restart the immune system. The results have failed to provide a cure.

Now a new study, published in Science Translational Medicine, appears to explain why those previous attempts failed and how some genetic rejiggering could lead to a successful treatment for type 1 diabetes.

An analysis of the gene activity inside the blood stem cells of diabetic mice and humans reveals that these cells lack a protein called PD-L1. This protein is known to play an important role in putting the brakes on T cell activity. Because T cells are potent cell killers, it’s important for proteins like PD-L1 to keep the activated T cells in check.

Cell based image for t 1 diabetes

Credit: Andrea Panigada/Nancy Fliesler

Researchers from Boston Children’s Hospital hypothesized that adding back PD-L1 may prevent T cells from the indiscriminate killing of the body’s own insulin-producing cells. To test this idea, the research team genetically engineered mouse blood stem cells to produce the PD-L1 protein. Experiments with the cells in a petri dish showed that the addition of PD-L1 did indeed block the attack-on-self activity. And when these blood stem cells were transplanted into a diabetic mouse strain, the disease was reversed in most of the animals over the short term while a third of the mice had long-lasting benefits.

The researchers hope this targeting of PD-L1 production – which the researchers could also stimulate with pharmacological drugs – will contribute to a cure for type 1 diabetes.

FDA’s new guidelines for stem cell treatments

Gottlieb

FDA Commissioner Scott Gottlieb

Yesterday Scott Gottlieb, the Commissioner at the US Food and Drug Administration (FDA), laid out some new guidelines for the way the agency regulates stem cells and regenerative medicine. The news was good for patients, not so good for clinics offering unproven treatments.

First the good. Gottlieb announced new guidelines encouraging innovation in the development of stem cell therapies, and faster pathways for therapies, that show they are both safe and effective, to reach the patient.

At the same time, he detailed new rules that provide greater clarity about what clinics can do with stem cells without incurring the wrath of the FDA. Those guidelines detail the limits on the kinds of procedures clinics can offer and what ways they can “manipulate” those cells. Clinics that go beyond those limits could be in trouble.

In making the announcement Gottlieb said:

“To be clear, we remain committed to ensuring that patients have access to safe and effective regenerative medicine products as efficiently as possible. We are also committed to making sure we take action against products being unlawfully marketed that pose a potential significant risk to their safety. The framework we’re announcing today gives us the solid platform we need to continue to take enforcement action against a small number of clearly unscrupulous actors.”

Many of the details in the announcement match what CIRM has been pushing for some years. Randy Mills, our previous President and CEO, called for many of these changes in an Op Ed he co-wrote with former US Senator Bill Frist.

Our hope now is that the FDA continues to follow this promising path and turns these draft proposals into hard policy.

 

CIRM Board invests in three new stem cell clinical trials targeting arthritis, cancer and deadly infections

knee

Arthritis of the knee

Every day at CIRM we get calls from people looking for a stem cell therapy to help them fight a life-threatening or life-altering disease or condition. One of the most common calls is about osteoarthritis, a painful condition where the cartilage that helps cushion our joints is worn away, leaving bone to rub on bone. People call asking if we have something, anything, that might be able to help them. Now we do.

At yesterday’s CIRM Board meeting the Independent Citizens’ Oversight Committee or ICOC (the formal title of the Board) awarded almost $8.5 million to the California Institute for Biomedical Research (CALIBR) to test a drug that appears to help the body regenerate cartilage. In preclinical tests the drug, KA34, stimulated mesenchymal stem cells to turn into chondrocytes, the kind of cell found in healthy cartilage. It’s hoped these new cells will replace those killed off by osteoarthritis and repair the damage.

This is a Phase 1 clinical trial where the goal is primarily to make sure this approach is safe in patients. If the treatment also shows hints it’s working – and of course we hope it will – that’s a bonus which will need to be confirmed in later stage, and larger, clinical trials.

From a purely selfish perspective, it will be nice for us to be able to tell callers that we do have a clinical trial underway and are hopeful it could lead to an effective treatment. Right now the only alternatives for many patients are powerful opioids and pain killers, surgery, or turning to clinics that offer unproven stem cell therapies.

Targeting immune system cancer

The CIRM Board also awarded Poseida Therapeutics $19.8 million to target multiple myeloma, using the patient’s own genetically re-engineered stem cells. Multiple myeloma is caused when plasma cells, which are a type of white blood cell found in the bone marrow and are a key part of our immune system, turn cancerous and grow out of control.

As Dr. Maria Millan, CIRM’s President & CEO, said in a news release:

“Multiple myeloma disproportionately affects people over the age of 65 and African Americans, and it leads to progressive bone destruction, severe anemia, infectious complications and kidney and heart damage from abnormal proteins produced by the malignant plasma cells.  Less than half of patients with multiple myeloma live beyond 5 years. Poseida’s technology is seeking to destroy these cancerous myeloma cells with an immunotherapy approach that uses the patient’s own engineered immune system T cells to seek and destroy the myeloma cells.”

In a news release from Poseida, CEO Dr. Eric Ostertag, said the therapy – called P-BCMA-101 – holds a lot of promise:

“P-BCMA-101 is elegantly designed with several key characteristics, including an exceptionally high concentration of stem cell memory T cells which has the potential to significantly improve durability of response to treatment.”

Deadly infections

The third clinical trial funded by the Board yesterday also uses T cells. Researchers at Children’s Hospital of Los Angeles were awarded $4.8 million for a Phase 1 clinical trial targeting potentially deadly infections in people who have a weakened immune system.

Viruses such as cytomegalovirus, Epstein-Barr, and adenovirus are commonly found in all of us, but our bodies are usually able to easily fight them off. However, patients with weakened immune systems resulting from chemotherapy, bone marrow or cord blood transplant often lack that ability to combat these viruses and it can prove fatal.

The researchers are taking T cells from healthy donors that have been genetically matched to the patient’s immune system and engineered to fight these viruses. The cells are then transplanted into the patient and will hopefully help boost their immune system’s ability to fight the virus and provide long-term protection.

Whenever you can tell someone who calls you, desperately looking for help, that you have something that might be able to help them, you can hear the relief on the other end of the line. Of course, we explain that these are only early-stage clinical trials and that we don’t know if they’ll work. But for someone who up until that point felt they had no options and, often, no hope, it’s welcome and encouraging news that progress is being made.

 

 

California’s stem cell agency rounds up the year with two more big hits

icoc_dec2016-17

CIRM Board meeting with  Jake Javier, CIRM Chair Jonathan Thomas, Vice Chair Sen. Art Torres (Ret.) and President/CEO Randy Mills

It’s traditional to end the year with a look back at what you hoped to accomplish and an assessment of what you did. By that standard 2016 has been a pretty good year for us at CIRM.

Yesterday our governing Board approved funding for two new clinical trials, one to help kidney transplant patients, the second to help people battling a disease that destroys vision. By itself that is a no small achievement. Anytime you can support potentially transformative research you are helping advance the field. But getting these two clinical trials over the start line means that CIRM has also met one of its big goals for the year; funding ten new clinical trials.

If you had asked us back in the summer, when we had funded only two clinical trials in 2016, we would have said that the chances of us reaching ten trials by the end of the year were about as good as a real estate developer winning the White House. And yet……..

Helping kidney transplant recipients

The Board awarded $6.65 million to researchers at Stanford University who are using a deceptively simple approach to help people who get a kidney transplant. Currently people who get a transplant have to take anti-rejection medications for the rest of their life to prevent their body rejecting the new organ. These powerful immunosuppressive medications are essential but also come with a cost; they increase the risk of cancer, infection and heart disease.

icoc_dec2016-3

CIRM President/CEO Randy Mills addresses the CIRM Board

The Stanford team will see if it can help transplant patients bypass the need for those drugs by injecting blood stem cells and T cells (which play an important role in the immune system) from the kidney donor into the kidney recipient. The hope is by using cells from the donor, you can help the recipient’s body more readily adjust to the new organ and reduce the likelihood the body’s immune system will attack it.

This would be no small feat. Every year around 17,000 kidney transplants take place in the US, and many people who get a donor kidney experience fevers, infections and other side effects as a result of taking the anti-rejection medications. This clinical trial is a potentially transformative approach that could help protect the integrity of the transplanted organ, and improve the quality of life for the kidney recipient.

Fighting blindness

The second trial approved for funding is one we are already very familiar with; Dr. Henry Klassen and jCyte’s work in treating retinitis pigmentosa (RP). This is a devastating disease that typically strikes before age 30 and slowly destroys a person’s vision. We’ve blogged about it here and here.

Dr. Klassen, a researcher at UC Irvine, has developed a method of injecting what are called retinal progenitor cells into the back of the eye. The hope is that these cells will repair and replace the cells damaged by RP. In a CIRM-funded Phase 1 clinical trial the method proved safe with no serious side effects, and some of the patients also reported improvements in their vision. This raised hopes that a Phase 2 clinical trial using a larger number of cells in a larger number of patients could really see if this therapy is as promising as we hope. The Board approved almost $8.3 million to support that work.

Seeing is believing

How promising? Well, I recently talked to Rosie Barrero, who took part in the first phase clinical trial. She told me that she was surprised how quickly she started to notice improvements in her vision:

“There’s more definition, more colors. I am seeing colors I haven’t seen in years. We have different cups in our house but I couldn’t really make out the different colors. One morning I woke up and realized ‘Oh my gosh, one of them is purple and one blue’. I was by myself, in tears, and it felt amazing, unbelievable.”

Amazing was a phrase that came up a lot yesterday when we introduced four people to our Board. Each of the four had taken part in a stem cell clinical trial that changed their lives, even saved their lives. It was a very emotional scene as they got a chance to thank the group that made those trials, those treatments possible.

We’ll have more on that in a future blog.

 

 

 

 

Stem cell stories that caught our eye: turning on T cells; fixing our brains; progress and trends in stem cells; and one young man’s journey to recover from a devastating injury

Healthy_Human_T_Cell

A healthy T cell

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Directing the creation of T cells. To paraphrase the GOP Presidential nominee, any sane person LOVES, LOVES LOVES their T cells, in a HUGE way, so HUGE. They scamper around the body getting rid of viruses and the tiny cancers we all have in us all the time. A CIRM-funded team at CalTech has worked out the steps our genetic machinery must take to make more of them, a first step in letting physicians turn up the action of our immune systems.

We have known for some time the identity of the genetic switch that is the last, critical step in turning blood stem cells into T cells, but nothing in our body is as simple as a single on-off event. The Caltech team isolated four genetic factors in the path leading to that main switch and, somewhat unsuspected, they found out those four steps had to be activated sequentially, not all at the same time. They discovered the path by engineering mouse cells so that the main T cell switch, Bcl11b, glows under a microscope when it is turned on.

“We identify the contributions of four regulators of Bcl11b, which are all needed for its activation but carry out surprisingly different functions in enabling the gene to be turned on,” said Ellen Rothenberg, the senior author in a university press release picked up by Innovations Report. “It’s interesting–the gene still needs the full quorum of transcription factors, but we now find that it also needs them to work in the right order.”

Video primer on stem cells in the brain.  In conjunction with an article in its August issue, Scientific American posted a video from the Brain Forum in Switzerland of Elena Cattaneo of the University of Milan explaining the basics of adult versus pluripotent stem cells, and in particular how we are thinking about using them to repair diseases in the brain.

The 20-minute talk gives a brief review of pioneers who “stood alone in unmarked territory.” She asks how can stem cells be so powerful; and answers by saying they have lots of secrets and those secrets are what stem cell scientist like her are working to unravel.  She notes stem cells have never seen a brain, but if you show them a few factors they can become specialized nerves. After discussing collaborations in Europe to grow replacement dopamine neurons for Parkinson’s disease, she went on to describe her own effort to do the same thing in Huntington’s disease, but in this case create the striatal nerves lost in that disease.

The video closes with a discussion of how basic stem cell research can answer evolutionary questions, in particular how genetic changes allowed higher organisms to develop more complex nervous systems.

kelley and kent

CIRM Science Officers Kelly Shepard and Kent Fitzgerald

A stem cell review that hits close to home.  IEEE Pulse, a publication for scientists who mix engineering and medicine and biology, had one of their reporters interview two of our colleagues on CIRM’s science team. They asked senior science officers Kelly Shepard and Kent Fitzgerald to reflect on how the stem cell field has progressed based on their experience working to attract top researchers to apply for our grants and watching our panel of outside reviewers select the top 20 to 30 percent of each set of applicants.

One of the biggest changes has been a move from animal stem cell models to work with human stem cells, and because of CIRM’s dedicated and sustained funding through the voter initiative Proposition 71, California scientists have led the way in this change. Kelly described examples of how mouse and human systems are different and having data on human cells has been critical to moving toward therapies.

Kelly and Kent address several technology trends. They note how quickly stem cell scientists have wrapped their arms around the new trendy gene editing technology CRISPR and discuss ways it is being used in the field. They also discuss the important role of our recently developed ability to perform single cell analysis and other technologies like using vessels called exosomes that carry some of the same factors as stem cells without having to go through all the issues around transplanting whole cells.

“We’re really looking to move things from discovery to the clinic. CIRM has laid the foundation by establishing a good understanding of mechanistic biology and how stem cells work and is now taking the knowledge and applying it for the benefit of patients,” Kent said toward the end of the interview.

jake and family

Jake Javier and his family

Jake’s story: one young man’s journey to and through a stem cell transplant; As a former TV writer and producer I tend to be quite critical about the way TV news typically covers medical stories. But a recent story on KTVU, the Fox News affiliate here in the San Francisco Bay Area, showed how these stories can be done in a way that balances hope, and accuracy.

Reporter Julie Haener followed the story of Jake Javier – we have blogged about Jake before – a young man who broke his spine and was then given a stem cell transplant as part of the Asterias Biotherapeutics clinical trial that CIRM is funding.

It’s a touching story that highlights the difficulty treating these injuries, but also the hope that stem cell therapies holds out for people like Jake, and of course for his family too.

If you want to see how a TV story can be done well, this is a great example.

T cell fate and future immunotherapies rely on a tag team of genetic switches

Imagine if scientists could build microscopic smart missiles that specifically seek out and destroy deadly, hard-to-treat cancer cells in a patient’s body? Well, you don’t have to imagine it actually. With techniques such as chimeric antigen receptor (CAR) T therapy, a patient’s own T cells – immune system cells that fight off viruses and cancer cells – can be genetically modified to produce customized cell surface proteins to recognize and kill the specific cancer cells eluding the patient’s natural defenses. It is one of the most exciting and promising techniques currently in development for the treatment of cancer.

Human T Cell (Wikipedia)

Human T Cell (Wikipedia)

Although there have been several clinical trial success stories, it’s still early days for engineered T cell immunotherapies and much more work is needed to fine tune the approach as well as overcome potential dangerous side effects. Taking a step back and gaining a deeper understanding of how stem cells specialize into T cells in the first place could go a long way into increasing the efficiency and precision of this therapeutic strategy.

Enter the CIRM-funded work of Hao Yuan Kueh and others in Ellen Rothenberg’s lab at CalTech. Reporting yesterday in Nature Immunology, the Rothenberg team uncovered a time dependent array of genetic switches – some with an ON/OFF function, others with “volume” control – that together control the commitment of stem cells to become T cells.

Previous studies have shown that the protein encoded by the Bcl11b gene is the key master switch that when activated sets a “no going back” path toward a T cell fate. A group of other genes, including Runx1, TCF-1 and GATA-3 are known to play a role in activating Bcl11b. The dominant school of thought is that these proteins gradually accumulate at the Bcl11b gene and once a threshold level is achieved, the proteins combine to enable the Bcl11b activation switch to flip on. However, other studies suggest that some of these proteins may act as “pioneer” factors that loosen up the DNA structure and allow the other proteins to readily access and turn on the Bcl11b gene. Figuring out which mechanism is at play is critical to precisely manipulating T cell development through genetic engineering.

To tease out the answer, the CalTech team engineered mice such that cells with activated Bcl11b would glow which allows visualizing the fate of single cells. We reached out to Dr. Kueh on the rationale for this experimental approach:

Hao Yuan Kueh, CalTech

Hao Yuan Kueh, CalTech

“To fully understand how genes are controlled, we need to watch them turn on and off in single, living cells over time.  As cells in our body are unique and different from one another, standard measurement methods, which average over millions of cells, often do not tell us the entire picture.”

The team examined the impact of inhibiting the T cell specific proteins GATA-3 and TCF-1 at different stages in T cell development in single cells. When the production of these two proteins were blocked in very early T cell progenitor (ETPs) cells, activation of Bcl11b was dramatically reduced. But that’s not what they observed when the experiment was repeated in a later stage of T cell development. In this case, blocking GATA-3 and TCF-1 had a much weaker impact on Bcl11b. So GATA-3 and TCF-1 are important for turning on Bcl11b early in T cell development but are not necessary for maintaining Bcl11b activation at later stages.

Inhibition of Runx1, on the other hand, did lead to a reduction in Bcl11b in these later T cell development stages. Making Runx1 levels artificially high conversely led to elevated Bcl11b in these cells.

Together, these results point to GATA-3 and TCF-1 as the key factors for turning on Bcl11b to commit cells to a T cell fate and then they hand off their duties to Runx1 to keep Bcl11b on and maintaining the T cell identity. Dr. Kuhn sums up the results and their implications this way:

“Our work shows that control of gene expression is very much a team effort, where some proteins flip the gene’s master ON-OFF switch, and others set its expression levels after it turns on…These results will help us generate customized T-cells to fight cancer and other diseases.  As T-cells are specialized to recognize and fight foreign agents in our body, this therapy strategy holds much promise for diseases that are difficult to treat with standard drug-based methods.  Also, these intricate gene regulation mechanisms are likely to be in play in other cell types in our body, not just T-cells, and so we believe our results will be widely relevant.”

New type of diabetes caused by old age may be treatable

I’m going to tell you a secret: I love sugar. I love it so much that as a little kid my mom used to tell me scary stories about how my teeth would fall out and that I might get diabetes one day if I ate too many sweets. Thankfully, none of these things happened. I have a full set of teeth (and they’re real), my blood sugar level is normal, and I’ve become one with the term “everything in moderation”.

I am not out of the woods, however: a newly discovered type of diabetes could strike in a few decades. A research team has found the cause of a type of diabetes that occurs because of old age, and a potential cure, at least in mice.

Diabetes comes in different flavors

People who suffer from diabetes (which is almost 30 million Americans) lack the ability to regulate the amount of sugar in their blood. The pancreas is the organ that regulates blood sugar by producing a hormone called insulin. If blood has a high sugar level, the pancreas releases insulin, which helps muscle, liver, and fat cells to absorb the excess sugar until the levels in the blood are back to normal.

There are two main forms of diabetes, type 1 and 2, both of which cause hyperglycemia or high blood sugar. Type 1 is an autoimmune disorder where the immune system attacks and kills the insulin-producing cells in the pancreas. As a result, these type 1 diabetics aren’t able to produce insulin and endure a lifetime of daily insulin shots to manage their condition. Type 2 diabetes is the more common form of the disease and occurs when the body’s cells become unresponsive, or resistant, to insulin and stop absorbing sugar from the bloodstream.

The cause of type 1 diabetes is not known although genetic factors are sure to be involved. Type 2 diabetes can be caused by a combination of factors including poor diet, obesity, genetics, stress, and old age. Both forms of the disease can be fatal if not managed properly and raise the risk of other medical complications such as heart disease, blindness, ulcers, and kidney failure.

While type 1 or 2 diabetes make up the vast majority of the cases, there are actually other forms of this disease that we are only just beginning to understand. One of them is type 3, which is linked to Alzheimer’s disease. (To learn more about the link between AD and diabetes, read this blog.)

Old age can cause diabetes

Another form of diabetes, which is in the running for the title of type 4, is caused by old age. Unlike type 2 diabetes which also occurs in adults, type 4 individuals don’t have the typical associated risk factors like weight gain. The exact mechanism behind age-related type 4 diabetes in humans isn’t known, but a CIRM-funded study published today in Nature identified the cause of diabetes in older, non-obese mice.

Scientists from the Salk Institute compared the immune systems of healthy mice to lean mice with age-associated insulin resistance or mice with obesity-associated insulin resistance (the equivalent to type 2 diabetes in humans). When they studied the fat tissue in the three animal models, they noticed a striking difference in the number of immune cells called T regulatory cells (Tregs). These cells are the “keepers of the immune system”, and they keep inflammation and excessive activity of other immune cells to a minimum.

Lean mice with age-related diabetes, had a substantially larger number of Tregs in their fat tissue compared to obesity-related diabetic and normal mice. Instead of being their usual helpful selves, the overabundance of Tregs in the age-related diabetic mice caused insulin resistance.

Salk researchers show that diabetes in elderly, lean animals is caused by an overabundance of immune cells in fat. In this graphic, fat tissue is shown with representations of the immune cells called Tregs (orange). In aged mice with diabetes (represented on the right), Tregs are overexpressed in fat tissue and trigger insulin resistance. When Tregs are blocked, the fat cells in mice become insulin sensitive again. (Image courtesy of Salk Institute)

Diabetes in elderly, lean animals is caused by an overabundance of immune cells called Tregs (orange)  in fat tissue (brown cells). In aged mice with diabetes (right), Tregs are overexpressed in fat tissue and trigger insulin resistance. When Tregs are blocked, the fat cells in mice become insulin sensitive again. (Image courtesy of Salk Institute)

In a Salk Institute press release, lead author Sagar Bapat explained:

Normally, Tregs help calm inflammation. Because fat tissue is constantly broken down and built back up as it stores and releases energy, it requires low levels of inflammation to constantly remodel itself. But as someone ages, the new research suggests, Tregs gradually accumulate within fat. And if the cells reach a tipping point where they completely block inflammation in fat tissue, they can cause fat deposits to build up inside unseen areas of the body, including the liver, leading to insulin resistance.

A cure for type 4 diabetes, but in mice…

After they identified the cause, the authors next searched for a solution. They blocked the build up of Tregs in the fat tissue of age-related diabetic mice using an antibody drug that inhibits the production of Tregs. The drug successfully cured the age-related diabetic mice of their insulin resistance, but didn’t do the same for the obesity-related diabetic mice. The authors concluded that the two forms of diabetes have different causes and type 4 can be cured by removing excessive Tregs from fat tissue.

This study is only the beginning for understanding age-related diabetes. The authors next want to find out why Tregs accumulate in the fat tissue of older mice, and if they also build up in other tissues and organs. They are also curious to know if the same phenomenon happens in elderly humans who become diabetic but don’t have type 2 diabetes.

Understanding the cause of age-related diabetes in humans is of upmost importance to Ronald Evans who is the director of the Gene Expression Lab at the Salk Institute, and senior author on the study.

Ron Evans

Ron Evans

A lot of diabetes in the elderly goes undiagnosed because they don’t have the classical risk factors for type 2 diabetes, such as obesity. We hope our discovery not only leads to therapeutics, but to an increased recognition of type 4 diabetes as a distinct disease.

For more on this exciting study, check out a video interview of Dr. Evans from the Salk Institute:


Related links:

Breast Cancer Tumors Recruit Immune Cells to the Dark Side

We rely on our immune system to stave off all classes of disease—but what happens when the very system responsible for keeping us healthy turns to the dark side? In new research published today, scientists uncover new evidence that reveals how breast cancer tumors can actually recruit immune cells to spur the spread of disease.

Some forms of breast cancer tumors can actually turn the body's own immune system against itself.

Some forms of breast cancer tumors can actually turn the body’s own immune system against itself.

Breast cancer is one of the most common cancers, and if caught early, is highly treatable. In fact, the majority of deaths from breast cancer occur because the disease has been caught too late, having already spread to other parts of the body, a process called ‘metastasis.’ Recently, scientists discovered that women who have a heightened number of a particular type of immune cells, called ‘neutrophils,’ in their blood stream have a higher chance of their breast cancer metastasizing to other tissues. But they couldn’t figure out why.

Enter Karin de Visser, and her team at the Netherlands Cancer Institute, who announce today in the journal Nature the precise link between neutrophil immune cells and breast cancer metastasis.

They found that some types of breast tumors are particularly nefarious, sending out signals to the person’s immune system to speed up their production of neutrophils. And then they instruct these newly activated neutrophils to go rogue.

Rather than attack the tumor, these neutrophils turn on the immune system. They especially focus their efforts at blocking T cells—the type of immune cells whose job is normally to target and attack cancer cells. Further examination in mouse models of breast cancer revealed a particular protein, called interleukin 17 (or IL17) played a key role in this process. As Visser explained in today’s news release:

“We saw in our experiments that IL17 is crucial for the increased production of neutrophils. And not only that, it turns out that this is also the molecule that changes the behavior of the neutrophils, causing them to become T cell inhibitory.”

The solution then, was clear: block the connection, or pathway, between IL17 and neutrophils, and you can thwart the tumor’s efforts. And when Visser and her team, including first author and postdoctoral researcher Seth Coffelt, did this they saw a significant improvement. When the IL17-neutrophil pathway was blocked in the mouse models, the tumors failed to spread at the same rate.

“What’s notable is that blocking the IL17-neutrophil route prevented the development of metastases, but did not affect the primary tumor,” Visser added. “So this could be a promising strategy to prevent the tumor from spreading.”

The researchers are cautious about focusing their efforts on blocking neutrophils, however, as these cells are in and of themselves important to stave off infections. A breast cancer patient with neutrophil levels that were too low would be at risk for developing a whole host of infections from dangerous pathogens. As such, the research team argues that focusing on ways to block IL17 is the best option.

Just last month, the FDA approved an anti-IL17 based therapy to treat psoriasis. This therapy, or others like it, could be harnessed to treat aggressive breast cancers. Says Visser:

“It would be very interesting to investigate whether these already existing drugs are beneficial for breast cancer patients. It may be possible to turn these traitors of the immune system back towards the good side and prevent their ability to promote breast cancer metastasis.”