Hits and Myths as people celebrate Stem Cell Awareness Day

UC Davis #1

Stem Cell Awareness Day at UC Davis

Every year, the second Wednesday in October is set aside as Stem Cell Awareness Day, a time to celebrate the progress being made in the field and to remind us of the challenges that lie ahead.

While the event began here in California in 2008, with then-Governor Arnold Schwarzenegger highlighting the work of CIRM, saying: ”The discoveries being made today in our Golden State will have a great impact on many around the world for generations to come.” It has since grown to become a global event.

Here in California, for example, UC Davis and the University of Southern California (USC) both held events to mark the day.

At UC Davis Jan Nolta, PhD., the Director of the Stem Cell Program, introduced a series of speakers who highlighted the terrific work being done at the university. Peter Belafsky talked about using stem cells to repair damaged trachea and to help people who are experiencing voice or swallowing disorders. Mark Lee highlighted the progress being made in using stem cells to repair hard-to-heal broken bones. Aijun Wang focused on some really exciting work that could one day lead to a therapy for spina bifida (including some ridiculously cute video of English bulldogs who are able to walk again because of this therapy.)

USC hosted 100 local high school students for a panel presentation and discussion about careers in stem cell research. The panel featured four scientists talking about their experience, why the students should think about a career in science and how to go about planning one. USC put together a terrific video of the researchers talking about their experiences, something that can help any student around the US consider becoming part of the future of stem cell research.

Similar events were held in other institutions around California. But the celebration wasn’t limited to the Golden State. At the Texas Heart Institute in Houston, Texas, they held an event to talk to the public about the clinical trials they are supporting using stem cells to help people suffering from heart failure or other heart-related issues.


Finally, the UK-based RegMedNet, a community site that unites the diverse regenerative medicine community, marked the day by exploring some of the myths and misconceptions still surrounding stem cells and stem cell research.

You can read those here.

Every group takes a different approach to celebrating Stem Cell Awareness Day, but each is united by a common desire, to help people understand the progress being made in finding new treatments and even cures for people with unmet medical needs.

‘Pay-to-Participate’ stem cell clinical studies, the ugly stepchild of ClinicalTrials.gov

When patients are looking for clinical trials testing new drugs or treatments for their disease, one of the main websites they visit is ClinicalTrials.gov. It’s a registry provided by the National Institutes of Health (NIH) of approximately 250,000 clinical trials spanning over 200 countries around the world.

ClinicalTrials.gov website

If you visit the website, you’ll find CIRM’s 28 active clinical trials testing stem cell-based therapies for indications like spinal cord injury, type 1 diabetes, heart failure, ALS, cancer and more. These are Food and Drug Administration (FDA)-approved trials, meaning that researchers did the proper preclinical studies to prove that a therapy was safe and effective in animal models and received approval from the US FDA to test the treatment in human clinical trials.

As the largest clinical registry in the world, ClinicalTrials.gov is a very valuable resource for patients and the public. But there are studies on the website that have recently surfaced and taken on the role of ‘ugly stepchild’. These are unapproved stem cell therapies from companies and stem cell clinics that are registering their “pay-to-participate treatments”. And they are doing so in clever ways that don’t make it obvious to patients that the trials aren’t legitimate. The reason this is so troubling is that unproven therapies can be dangerous or even life-threatening to patients.

Leigh Turner

Leigh Turner, an associate professor of bioethics at the University of Minnesota, has written extensively about the serious problem of stem cell clinics marketing unproven stem cell therapies to desperate patients. Turner, in collaboration with UC Davis professor Dr. Paul Knoepfler, published a study in Cell Stem Cell last year that identified over 550 clinics in the US that promote unproven treatments for almost any condition, including diseases like Alzheimer’s where research has shown that cures are a long way off.

Today, Turner published an article in Regenerative Medicine that shines a light on how companies and clinics are taking advantage of ClinicalTrials.gov to promote their “pay-to-participate” unproven stem cell studies. The article is available for free if you register with RegMedNet, but you can find news coverage about Turner’s piece through EurekAlert,  Wired Magazine and the San Diego Union Tribune.

In an interview with RegMedNet, Turner explained that his research into how businesses promote unproven stem cell therapies led to the discovery that these studies were being listed as “pay-to-participate” on ClinicalTrials.gov.

“Many of these businesses use websites, social media, YouTube videos, webinars and other tools to engage in direct-to-consumer marketing of supposed stem cell therapies. To my surprise, at one point I noticed that some of these companies had successfully listed “pay-to-participate” studies on ClinicalTrials.gov. Many of these “studies” look to me like little more than marketing exercises, though of course the businesses listing them would presumably argue that they are genuine clinical studies.”

While FDA-approved trials can charge study participants, most don’t. If they do, it’s motivated by recovering costs rather than making a profit. Turner also explained that organizations with FDA-approved studies “need to prepare a detailed rationale and a budget, and obtain approval from the FDA.”

Companies with unproven stem cell therapies are ignoring these regulatory requirements and listing their studies as “patient-funded” or “patient-sponsored”. Turner found seven such “pay-to-participate” studies sponsored by US companies on ClinicalTrials.gov. He also identified 11 studies where companies don’t indicate that patients have to pay, but do charge patients to participate in the studies.

Turner is concerned that these companies are using ClinicalTrials.gov to take advantage of innocent patients who don’t realize that these unproven treatments aren’t backed by solid scientific research.

“Patients have already been lured to stem cell clinics that use ClinicalTrials.gov to market unproven stem cell interventions. Furthermore, some patients have been injured after undergoing stem cell procedures at such businesses. Many individuals use ClinicalTrials.gov to find legitimate, well-designed, and carefully conducted clinical trials. They are at risk of being misled by study listings that lend an air of legitimacy and credibility to clinics promoting unproven and unlicensed stem cell interventions.”

Having identified the problem, Turner is now advocating for a solution.

“ClinicalTrials.gov needs to raise the bar and perform a proper review of studies before they are registered. Better screening is needed before more patients and research subjects are harmed. It’s astonishing that officials at the NIH and US FDA haven’t already done something to address this obvious matter of patient safety. Putting a disclaimer on the website isn’t sufficient.”

The disclaimer that Turner is referring to is a statement on the ClinicalTrials.gov website that says, “Listing of a study on this site does not reflect endorsement by the National Institutes of Health (NIH).”

Turner argues that this disclaimer “simply isn’t sufficient.”

“Patients and their loved ones, physicians, researchers, journalists, and many other individuals all use ClinicalTrials.gov because they regard the registry and database as a source of meaningful, credible information about clinical studies. I suspect most individuals would be shocked at how easy it is to register on ClinicalTrials.gov studies that have obvious methodological problems, do not appear to comply with applicable federal regulations or have glaring ethical shortcomings.”

While Turner acknowledges that the NIH database of clinical trials is a “terrific public resource” that he himself has used, he regards it “as a collective good that needs to be protected from parties willing to misuse and abuse it.” His hope is that his article will give journalists the starting material to conduct further investigators into these pay-to-participate studies and the companies behind them. He also hopes that “such coverage will help convince NIH officials that they have a crucial role to play in making ClinicalTrials.gov a resource people can turn to for information about credible clinical trials rather than allowing it to become a database corrupted and devalued by highly problematic studies.”

Convincing is one thing, but implementing change is another. Turner said in his interview that he knows that “careful screening by NIH officials will require more resources, and I am making this argument at a time when much of the political discourse in the U.S. is about cutting funding for the CDC, FDA, NIH and other federal agencies.”

He remains hopeful however and concluded that “perhaps there are ways to jolt into action people who are in positions of power and who can act to help prevent the spread of misinformation, bad science, and marketing packaged as clinical research.”

Building the World’s Largest iPSC Repository: An Interview with CIRM’s Stephen Lin

This blog originally appeared on RegMedNet and was provided by Freya Leask, Editor & Community Manager of RegMedNet. In this interview, Stephen Lin, Senior Science Officer at the California Institute Regenerative Medicine (CIRM), discusses the scope, challenges and potential of CIRM’s iPSC Initiative. 


Stephen Lin

Stephen Lin received his PhD from Washington University (MO, USA) and completed his postdoctoral work at Harvard University (MA, USA). Lin is a senior science officer at CIRM which he joined in 2015 to oversee the development of a $32 million repository of iPSCs generated from up to 3000 healthy and diseased individuals and covering both complex and rare diseases. He also oversees a $40 million initiative to apply genomics and bioinformatics approaches to stem cell research and development of therapies. Lin is the program lead on the CIRM Translating Center which focuses on supporting the process development, safety/toxicity studies and manufacturing of stem cell therapy candidates to prepare them for clinical trials. He was previously a scientist at StemCells, Inc (CA, USA) and a staff scientist team lead at Thermo Fisher Scientific (MA, USA).

Q: Please introduce yourself and your institution.

I completed my PhD at Washington University in biochemistry, studying the mechanisms of aging, before doing my postdoc at Harvard, investigating programmed cell death. After that, I went into industry and have been working with stem cells ever since.

I was at the biotech company StemCells, Inc for 6 years where I worked on cell therapeutics. I then joined what was Life Technologies which is now Thermo Fisher Scientific.  I joined CIRM in 2015 as they were launching two new initiatives, the iPSC repository and the genomics initiative, which were a natural combination of my experience in both the stem cells industry and in genetic analysis.  I’ve been here for a year and a half, overseeing both initiatives as well as the CIRM Translating Center.

Q: What prompted the development of the iPSC repository?

Making iPSCs is challenging! It isn’t trivial for many research labs to produce these materials, especially for a wide variety of diseases; hence, the iPSC repository was set up in 2013. In its promotion of stem cells, CIRM had the financial resources to develop a bank for researchers and build up a critical mass of lines to save researchers the trouble of recruiting the patients, getting the consents, making and quality controlling the cells. CIRM wanted to cut that out and bring the resources straight to the research community.

Q: What are the challenges of storage so many iPSCs?

Many of the challenges of storing iPSCs and ensuring their quality are overcome with adequate quality controls at the production step. The main challenge is that we’re collecting samples from up to 3000 donors – the logistics of processing that many tissue samples from 11 funded and nonfunded collectors are difficult. The lines are being produced in the same uniform manner by one agency, Cellular Dynamics International (WI, USA), to ensure quality in terms of pluripotency, karyotyping and sterility testing.

Once the lines are made, they are stored at the Coriell Institute (NJ, USA). During storage, there is a challenge in simply keeping track of and distributing that many samples; we will have approximately 40 vials for each of the 3000 main lines. Both Cellular Dynamics and Coriell have sophisticated tracking systems and Coriell have set up a public catalog website where anyone can go to read about and order the lines. Most collections don’t have this functionality, as the IT infrastructure required for searching and displaying the lines along with clinical information, the ordering process, material transfer agreements and, for commercial uses, the licensing agreements was very complex.

Q: Can anyone use the repository?

Yes, they can! There is a fee to utilize the lines but we encourage researchers anywhere in the world to order them. The lines are mostly for research and academic purposes but the collection was built to be commercialized, all the way from collecting the samples. When the samples were collected, the patient consent included, among other things, banking, distribution, genetic characterization and commercialization.

The lines also have pre-negotiated licensing agreements with iPS Academia Japan (Kyoto, Japan) and the Wisconsin Alumni Research Foundation (WI, USA). Commercial entities that want to use the cells for drug screening can obtain a license which allows them to use these lines for drug discovery and drug screening purposes without fear of back payment royalties down the road. People often forget during drug screening that the intellectual property to make the iPSCs is still under patent, so if you do discover a drug using iPSCs without taking care of these licensing agreements, your discovery could be liable to ownership by that original intellectual property holder.

Q: Will wider access to high quality iPSCs accelerate discovery?

That’s our hope. When people make iPSCs, the quality can be highly variable depending on the lab’s background and experience, which was another impetus to create the repository. Cellular Dynamics have set up a very robust system to create these lines in a rigorous quality control pipeline to guarantee that these lines are pluripotent and genetically stable.

Q: What diseases could these lines be used to study and treat?

We collected samples from patients with many different diseases – from neurodevelopmental disorders including epilepsy and neurodegenerative diseases such as Alzheimer’s, to eye disease and diabetes – as well as the corresponding controls. We also have lines from rare diseases, where the communities have no other tools to study them, for example, ADCY5 related dyskinesia. You can read our recent blogs about our efforts to generate new iPSC lines for ADCY5 and other rare diseases here and here.

Q: What are your plans for the iPSC initiative this year?

We’re currently the largest publicly available repository in the world and we aren’t complete yet. We have just under half of the lines in with the other half still being produced and quality controlled. Something else we want to do is add further information to make the lines more valuable and ensure the drug models are constantly improving. The reason people will want to use iPSCs for human disease modeling is whether they have valuable information associated with them.  For example, we are trying to add genetic and sequencing information to the catalog for lines that have it. This will also allow researchers to prescreen the lines they are interested in to match the diseases and drugs they are studying.

Q: Does the future for iPSCs lie in being utilized as tools to find therapeutics as opposed to therapeutics themselves?

I think the future is two pronged. There is certainly a future for disease modeling and drug screening. There is currently an initiative within the FDA, the CiPA initiative, is designed to replace current paradigms for drug safety testing with computational model and stem cell models. In particular, they hope to be able to screen drugs for cardiotoxicity in stem cells before they go to patients.  Mouse and rodent models have different receptors and ion channels so these cardiotoxic effects aren’t usually seen until clinical trials.

The other avenue is in therapeutics. However, this will come later in the game because the lines being used for research often can’t be used for therapeutics. Patient consent for therapeutic use has to be obtained at sample collection, the tissue should be handled in compliance with good lab practice and the lines must be produced following good manufacturing process (GMP) guidelines. They must then be characterized to ensure they have met all safety protocols for iPSC therapeutics.

There is already a second trial being initiated in Japan of an iPSC therapeutic to treat macular degeneration, utilizing allogenic lines that are human leukocyte antigen-compatible and extensively safety profiled. Companies such as Lonza (Basel, Switzerland) and Cellular Dynamics are starting to produce their own GMP lines, and CIRM is funding some translation programs where clinical grade iPSCs are being produced for therapeutics.

Further Reading

Creative partnerships that promote progress

Lewis and Clark: great partnerships can change the world

Lewis and Clark: great partnerships can change the world

Having a good partner can turn something good into something truly memorable. Where would Laurel be without Hardy, Lewis without Clark, Butch Cassidy without the Sundance Kid. That’s why the stem cell agency has partnerships on a number of different levels as part of our mission of accelerating the development of stem cell cures to patients with unmet medical needs.

Our latest partnership is with RegMedNet which, in its own words, “provides a unique and unparalleled platform for the regenerative medicine community to share insights, discuss the latest research, and help move the field forward.” With a goal like that why would we not want to support them?

Like us RegMedNet believes that regenerative medicine is going to completely change the way we treat disease, even the way we think about disease. They also believe that progress of the kind we all want is only going to come by bringing together all the key players from the researchers and manufacturers, to the government regulators and, of course, the patient advocates. Each has a vital role to play in moving the field forward and RegMedNet reflects that in both the content it posts online and in the contributors, who represent institutions and companies worldwide.

One of the most important elements in any partnership is understanding, and RegMedNet does a great job of trying to raise awareness about the field, the challenges we all face, and the progress being made. Bringing together so many different perspectives in one spot really helps create a much deeper understanding of regenerative medicine as a whole.

In a few short years regenerative medicine has gone from a relatively small field to a global industry. Our hope is that creating partnerships with like-minded groups around the world, is going to help it get even bigger and, even better.