
Scientists at Gladstone Institutes have discovered how to grow a first-of-its-kind organoid—a three-dimensional, organ-like cluster of cells—that mimics how gut and heart tissues arise cooperatively from stem cells.
The study was supported by a grant from CIRM and the Gladstone BioFulcrum Heart Failure Research Program.
Gladstone Senior Investigator Todd McDevitt, PhD said this first-of-its-kind organoid could serve as a new tool for laboratory research and improve our understanding of how developing organs and tissues cooperate and instruct each other.
McDevitt’s team creates heart organoids from human induced pluripotent stem cells, coaxing them into becoming heart cells by growing them in various cocktails of nutrients and other naturally occurring substances. In this case, the scientists tried a different cocktail to potentially allow a greater variety of heart cells to form.
To their surprise, they found that the new cocktail led to organoids that contained not only heart, but also gut cells.
“We were intrigued because organoids normally develop into a single type of tissue—for example, heart tissue only,” says Ana Silva, PhD, a postdoctoral scholar in the McDevitt Lab and first author of the new study. “Here, we had both heart and gut tissues growing together in a controlled manner, much as they would in a normal embryo.”

The researchers also found that compared to conventional heart organoids, the new organoids resulted in much more complex and mature heart structures—including some resembling more mature-like blood vessels.
These organoids offer a promising new look into the relationship between developing tissues, which has so far relied on growing single-tissue organoids separately and then attempting to combine them. Not only that, the organoids could help clarify how the process of human development can go wrong and provide insight on congenital disorders like chronic atrial and intestinal dysrhythmias that are known to affect both heart and gut development.
“Once it became clear that the presence of the gut tissue contributed to the maturity of the heart tissue, we realized we had arrived at something new and special,” says McDevitt.
Read the official release about this study on Gladstone’s website.
The study findings are published in the journal Cell Stem Cell.