By the numbers – a look at how the field of Regenerative Medicine is growing

file

ARM State of the Industry briefing

The Golden State Warriors, the current US basketball champions – and your favorite Stem Cell Agency’s neighbors in Oakland – have a slogan, “Strength in Numbers”. That could well apply to the field of Regenerative Medicine because the field is growing in numbers, growing in strength, and growing in influence.

Yesterday, the Alliance for Regenerative Medicine (ARM), the organization that represents the field, held its annual State of the Industry briefing in San Francisco, detailing what happened in 2018. It was pretty impressive.

In fact, just the number of people in the room was impressive. More than 800 RSVP’d for the event, more than for any previous meeting, but even then the room was filled over capacity with many standing around the edges because there were no seats left.

ARM itself is growing, 32 percent last year, and now has more than 300 members. Other impressive numbers include:

  • 906 gene and cell therapy companies worldwide
  • 484 gene and cell therapy companies in the US alone
  • 1,028 clinical trials taking place worldwide
  • 598 of those clinical trials (58 percent of the total) are targeting cancer
  • 59,575 patients are slated to be enrolled in those trials

All those numbers are up dramatically on last year. You can see all the details on the ARM website.

Another sign the industry is growing comes in the amount of money being invested. When people are willing to pony up hard cash you know it’s a sign they believe in you. Last year the field raised $13.8 billion worldwide, that’s up a whopping 73 percent on 2017. That represented a strong year across all fronts from corporate partnerships to Initial Public Offerings (several CIRM-supported companies such as Orchard Therapeutics and Forty Seven Inc. are in that number) and venture capital investments.

Clearly there are still challenges ahead, such as figuring out ways to pay for these therapies when they are approved so that they are available to the people who need them, the patients.

One of the issues that is going to be front and center in 2019 is reimbursement and developing new payment models. But that in itself is a sign of a maturing field. In past years the emphasis was on developing new treatments. Now that those are in the pipeline, we’re working on ways to pay for them.

That’s progress.

Knowledge is on the menu at Dinner with a Scientist:

Helen Budworth, Ph.D., is one of the Science Officers at CIRM. She wrote this blog about her experiences talking to some budding local scientists who just happen to be ten years old.kids dinner

Recently I had the pleasure of attending the Oakland Unified School District (OUSD) “Dinner with a Scientist” event held at the Oakland Zoo. OUSD has been hosting this annual event since 2009 to bring together local scientists, teachers, and students to celebrate science in an evening of activities and science conversation.

I was dining with 4th and 5th grade elementary students and their teachers from Think College Now and from Brookfield Elementary in Oakland. They included many budding scientists, with interests ranging from biology and chemistry, to geology and astronomy. The students were eager to learn about how I became a scientist, what interests me about my job and how they can prepare themselves for a future scientific career. I explained that my interest in science began in childhood because I loved puzzles and really enjoyed trying to work things out, and that my interest in science naturally flowed from that. Both students and teachers alike were interested to learn more about CIRM and what our scientists are working on.

The evening began with the students being asked a simple question: “What is science?” One of the kids said it was finding out new things; another said it meant conducting experiments to answer questions. One said it was a way of making money. He’s in for a rude surprise when he grows up!

kids dinner2

In order to demonstrate the potential of stem cells, I led an activity that allowed the groups to use Play Doh to model the early stages of human development from a zygote, the earliest stage of a fertilized egg, through the first few weeks of embryonic development. What I learned from this event is that when you ask a 4th/5th grader if they know how babies are made, you will get many giggles and some interesting descriptions of ways that sperm and egg can meet – but few details of what happens after that.

This hands-on activity showed the students the processes of cell division, differentiation and development of a multi-cellular organism from a single-celled zygote. Scientific studies of stem cells, such as those found at early stages of development, have allowed us to reach the point where we are now harnessing the power of these cells to create treatments for diseases. They were very intrigued by the idea that you begin life as a single cell, that grows and multiplies and changes until all those cells become the different parts of you and creates a whole human being.

The exercise, indeed the whole evening, gave the students an opportunity to see how scientific careers are translated to real world applications and will hopefully inspire some future scientists and doctors.

I asked one of the students what kind of scientist she wanted to be, and she replied that she wanted to be a chemist. When I asked why she said because she likes mixing things. That seems as good a reason to think about a career in science as any.