Positively good news from Asterias for CIRM-funded stem cell clinical trial for spinal cord injury

AsteriasWhenever I give a talk on stem cells one of the questions I invariably get asked is “how do you know the cells are going where you want them to and doing what you want them to?”

The answer is pretty simple: you look. That’s what Asterias Biotherapeutics did in their clinical trial to treat people with spinal cord injuries. They used magnetic resonance imaging (MRI) scans to see what was happening at the injury site; and what they saw was very encouraging.

Asterias is transplanting what they call AST-OPC1 cells into patients who have suffered recent injuries that have left them paralyzed from the neck down.  AST-OPC1 are oligodendrocyte progenitor cells, which develop into cells that support and protect nerve cells in the central nervous system, the area damaged in spinal cord injury. It’s hoped the treatment will restore connections at the injury site, allowing patients to regain some movement and feeling.

Taking a closer look

Early results suggest the therapy is doing just that, and now follow-up studies, using MRIs, are adding weight to those findings.

The MRIs – taken six months after treatment – show that the five patients given a dose of 10 million AST-OPC1 cells had no evidence of lesion cavities in their spines. That’s important because often, after a spinal cord injury, the injury site expands and forms a cavity, caused by the death of nerve and support cells in the spine, that results in permanent loss of movement and function below the site, and additional neurological damage to the patient.

Another group of patients, treated in an earlier phase of the clinical trial, showed no signs of lesion cavities 12 months after their treatment.

Positively encouraging

In a news release, Dr. Edward Wirth, the Chief Medical Officer at Asterias, says this is very positive:

“These new follow-up results based on MRI scans are very encouraging, and strongly suggest that AST-OPC1 cells have engrafted in these patients post-implantation and have the potential to prevent lesion cavity formation, possibly reducing long-term spinal cord tissue deterioration after spinal cord injury.”

Because the safety data is also encouraging Asterias is now doubling the dose of cells that will be transplanted into patients to 20 million, in a separate arm of the trial. They are hopeful this dose will be even more effective in helping restore movement and function in patients.

We can’t wait to see what they find.