Making stem cell and gene therapies available and affordable for all California patients

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Developing a new therapy: Photo courtesy UCLA

There is no benefit in helping create a miraculous new therapy that can cure people and save lives if no one except the super-rich can afford it. That’s why the California Institute for Regenerative Medicine (CIRM) has made creating a roadmap to help make new treatments both available and affordable for all Californians a central pillar of its new 5-year Strategic Plan.

New treatments based on novel new technologies often seem to come with a gob-smacking price tag. When Kymriah, a CAR-T cell cancer therapy, was approved it cost $475,000 for one treatment course. When the FDA approved Zolgensma to treat spinal muscular atrophy, a genetic disorder that causes muscle wasting and weakness, the cost was $2.1 million for one dose.

Part of the pricing is due to high manufacturing cost and the specialized resources needed to deliver the treatments. The treatments themselves are showing that they can be one-and-done options for patients, meaning just one treatment may be all they need to be cured. But even with all that innovation and promise the high price may impact access to patients in need.

At CIRM we believe that if California taxpayer money has helped researchers develop a new therapy, Californians should be able to get that therapy. To try and ensure they can we have created the Accessibility and Affordability Working Group (AAWG). The groups mission is to find a way to overcome the hurdles that stand between a patient and the treatment they need.

The AAWG will work with politicians and policy makers, researchers and regulators, insurance companies and patient advocate organizations to gather the data and information needed to make these therapies available and affordable. Dr. Le Ondra Clark Harvey, a CIRM Board member and mental health advocate, says the barriers we have to confront are not just financial, they are racial and ethnic too. 

We have already created a unique model for delivering stem cell therapies to patients through our Alpha Stem Cell Clinic Network. We are now setting out to build on that with our commitment to creating Community Care Centers of Excellence. But having world-class clinics capable of delivering life-saving therapies is not enough. We also need to make sure that Californians who need these treatments can get them regardless of who they are or their ability to pay.

To learn more read out new Strategic Plan.

Has Regenerative Medicine Come of Age?

Signals logo

For the past few years the Signals blog site –  which offers an insiders’ perspectives on the world of regenerative medicine and stem cell research – has hosted what it calls a “Blog Carnival”. This is an event where bloggers from across the stem cell field are invited to submit a piece based on a common theme. This year’s theme is “Has Regenerative Medicine Come of Age?” Here’s my take on that question:

Many cultures have different traditions to mark when a child comes of age. A bar mitzvah is a Jewish custom marking a boy reaching his 13th birthday when he is considered accountable for his own actions. Among Latinos in the US a quinceañera is the name given to the coming-of-age celebration on a girl’s 15th birthday.

Regenerative Medicine (RM) doesn’t have anything quite so simple or obvious, and yet the signs are strong that if RM hasn’t quite come of age, it’s not far off.

For example, look at our experience at the California Institute for Regenerative Medicine (CIRM). When we were created by the voters of California in 2004 the world of stem cell research was still at a relatively immature phase. In fact, CIRM was created just six years after scientists first discovered a way to derive stem cells from human embryos and develop those cells in the laboratory. No surprise then that in the first few years of our existence we devoted a lot of funding to building world class research facilities and investing in basic research, to gain a deeper understanding of stem cells, what they could do and how we could use them to develop therapies.

Fast forward 14 years and we now have funded 49 projects in clinical trials – everything from stroke and cancer to spinal cord injury and HIV/AIDS – and our early funding also helped another 11 projects get into clinical trials. Clearly the field has advanced dramatically.

In addition the FDA last year approved the first two CAR-T therapies – Kymriah and Yescarta – another indication that progress is being made at many levels.

But there is still a lot of work to do. Many of the trials we are funding at the Stem Cell Agency are either Phase 1 or 2 trials. We have only a few Phase 3 trials on our books, a pattern reflected in the wider RM field. For some projects the results are very encouraging – Dr. Gary Steinberg’s work at Stanford treating people recovering from a stroke is tremendously promising. For others, the results are disappointing. We have cancelled some projects because it was clear they were not going to meet their goals. That is to be expected. These clinical trials are experiments that are testing, often for the first time ever in people, a whole new way of treating disease. Failure comes with the territory.

As the number of projects moving out of the lab and into clinical trials increases so too are the other signs of progress in RM. We recently held a workshop bringing together researchers and regulators from all over the world to explore the biggest problems in manufacturing, including how you go from making a small batch of stem cells for a few patients in an early phase clinical trial to mass producing them for thousands, if not millions of patients. We are also working with the National Institutes of Health and other stakeholders in discussing the idea of reimbursement, figuring out who pays for these therapies so they are available to the patients who need them.

And as the field advances so too do the issues we have to deal with. The discovery of the gene-editing tool CRISPR has opened up all sorts of possible new ways of developing treatments for deadly diseases. But it has also opened up a Pandora’s box of ethical issues that the field as a whole is working hard to respond to.

These are clear signs of a maturing field. Five years ago, we dreamed of having these kinds of conversations. Now they are a regular feature of any RM conference.

The simple fact that we can pose a question asking if RM has come of age is a sign all by itself that we are on the way.

Like little kids sitting in the back of a car, anxious to get to their destination, we are asking “Are we there yet?” And as every parent in the front seat of their car responds, “Not yet. But soon.”