Friday Round Up

Here’s a look at a couple of stories that caught our eye this week:

Jasper Therapeutics has had a busy couple of weeks. Recently they announced data from their Phase 1 clinical trial treating people with Myelodysplastic syndromes (MDS). This is a group of disorders in which immature blood-forming cells in the bone marrow become abnormal and leads to low numbers of normal blood cells, especially red blood cells. We blogged about that here.

The data showed that six patients were given JSP191 – in combination with low-dose radiation five of the six had no detectable levels of disease and the sixth patient had reduced levels.

This was a big deal for us because CIRM funded the early stage research and even a clinical trial  that led to the development of JSP191.

Now Jasper has announced it is partnering with the National Institute of Allergy and Infectious Disease in a Phase 1/2 clinical trial using JSP191, as part of a treatment for chronic granulomatous disease (CGD). Congratulations to Jasper. And congratulations to us for helping them get there.

Oh, and just to toot our horn a little bit more – it is Friday after all – we have funded other approaches to CGD including one that resulted in curing Brenden Whittaker.

OK, enough about us.

To say that this last year has been a stressful one would be something of an understatement. But it’s not just people who get stressed. Stem cells do too. And, like people, when stem cells get stressed they don’t always behave in the way you would like them to. When some people get stressed they find a cocktail can help take the edge of it. Apparently that works for stem cells as well!

Now we are not talking about slipping a Manhattan or Mai Tai into a petri dish filled with stem cells. We are talking about a very different kind of cocktail.

Researchers at the National Institutes of Health have developed what they describe as a “four-part small molecule cocktail” that can help protect a specific kind of stem cell from stress. The cell is an induced pluripotent stem cell (iPSC), which has the ability to turn into any other kind of cell in the body. iPSC’s have great potential for treating a variety of different diseases and conditions, but they’re also sensitive and without the right conditions and environment they can get stressed and that in turn can damage their DNA and lead to them dying.

In a news release Dr. Ilyas Singeç, the lead researcher, says this NIH “cocktail” could help prevent that: “The small-molecule cocktail is safeguarding cells and making stem cell use more predictable and efficient. In preventing cellular stress and DNA damage that typically occur, we’re avoiding cell death and improving the quality of surviving cells. The cocktail will become a broadly used staple of the stem cell field and boost stem cell applications in both research and the clinic.”  

The team hope this could enhance the potential therapeutic uses of iPSCs in finding treatments for diseases such as diabetes, Parkinson’s and spinal cord injury.

The study is published in the journal Nature Methods.

Paving the Way

When someone scores a goal in soccer all the attention is lavished on them. Fans chant their name, their teammates pile on top in celebration, their agent starts calling sponsors asking for more money. But there’s often someone else deserving of praise too, that’s the player who provided the assist to make the goal possible in the first place. With that analogy in mind, CIRM just provided a very big assist for a very big goal.

The goal was scored by Jasper Therapeutics. They have just announced data from their Phase 1 clinical trial treating people with Myelodysplastic syndromes (MDS). This is a group of disorders in which immature blood-forming cells in the bone marrow become abnormal and leads to low numbers of normal blood cells, especially red blood cells. In about one in three patients, MDS can progress to acute myeloid leukemia (AML), a rapidly progressing cancer of the bone marrow cells.

The most effective way to treat, and even cure, MDS/AML is with a blood stem cell transplant, but this is often difficult for older patients, because it involves the use of toxic chemotherapy to destroy their existing bone marrow blood stem cells, to make room for the new, healthy ones. Even with a transplant there is often a high rate of relapse, because it’s hard for chemotherapy to kill all the cancer cells.

Jasper has developed a therapy, JSP191, which is a monoclonal antibody, to address this issue. JSP191 helps supplement the current treatment regimen by clearing all the remaining abnormal cells from the bone marrow and preventing relapse. In addition it also means the patients gets smaller doses of chemotherapy with lower levels of toxicity. In this Phase 1 study six patients, between the ages of 65 and 74, were given JSP191 – in combination with low-dose radiation and chemotherapy – prior to getting their transplant. The patients were followed-up at 90 days and five of the six had no detectable levels of MDS/AML, and the sixth patient had reduced levels. None of the patients experienced serious side effects.

Clearly that’s really encouraging news. And while CIRM didn’t fund this clinical trial, it wouldn’t have happened without us paving the way for this research. That’s where the notion of the assist comes in.

CIRM support led to the development of the JSP191 technology at Stanford. Our CIRM funds were used in the preclinical studies that form the scientific basis for using JSP191 in an MDS/AML setting.

Not only that, but this same technique was also used by Stanford’s Dr. Judy Shizuru in a clinical trial for children born with a form of severe combined immunodeficiency, a rare but fatal immune disorder in children. A clinical trial that CIRM funded.

It’s a reminder that therapies developed with one condition in mind can often be adapted to help treat other similar conditions. Jasper is doing just that. It hopes to start clinical trials this year using JSP191 for people getting blood stem cell transplants for severe autoimmune disease, sickle cell disease and Fanconi anemia.

Biotechnology companies join forces in developing treatment for X-SCID

Jasper Therapeutics, Inc., a biotechnology company focused on blood stem cell therapies, and Graphite Bio, Inc., a biotechnology company focused on gene editing therapies to treat or cure serious diseases, announced a research and clinical collaboration for a treatment for X-SCID.

X-SCID, which stands for X-linked severe combined immunodeficiency, is a genetic disorder that interferes with the normal development of the immune system, leaving infants vulnerable to infections that most people can easily fight off. One treatment for X-SCID involves a blood stem cell transplant, in which the patient’s defective stem cells are wiped out with chemotherapy or radiation to make room for normal blood stem cells to take their place. Unfortunately, the problem with chemotherapy or radiation in young infants is that it can lead to lifelong effects such as neurological impairment, growth delays, infertility, and risk of cancer.

Fortunately, Jasper Therapeutics has developed JSP191, a non-toxic alternative to chemotherapy and radiation. It is an antibody that works by targeting and removing the defective blood forming stem cells. The approach has previously been used in a CIRM-funded clinical trial ($20M award) for X-SCID.

Graphite Bio has developed GPH201, the first-in-human investigational blood stem cell treatment that will be evaluated as a potential cure for patients suffering from X-SCID. GPH201 is generated using precise and efficient gene editing technology, It works by directly replacing a defective gene that causes problems with the immune system. The hope is that GPH201 will ultimately lead to the production of fully functional, healthy immune cells.

The ultimate goal of this collaboration is to use JSP191 as the non-toxic alternative to chemotherapy in patients in order to remove their defective blood stem cells. After that, the gene editing blood stem cell technology developed by Graphite Bio can be introduced to patients in order to treat X-SCID. The two companies have agreed to collaborate on research, and potentially a clinical study, evaluating JSP191 as the non-toxic conditioning agent for GPH201.

In a press release, Josh Lehrer, M.Phil., M.D., chief executive officer at Graphite Bio, expressed excitement about the collaboration between the two companies.

“This collaboration with Jasper demonstrates our shared commitment to pioneering novel therapeutic approaches with the potential to significantly improve the treatment experiences of individuals with devastating conditions who stand to benefit from gene replacement therapies, initially for patients with XSCID. GPH201 harnesses our targeted gene integration platform to precisely target the defective gene that causes XSCID and replace it with a normal copy.”

In the same press release, Bill Lis, executive chairman and CEO of Jasper Therapeutics, also expressed optimism in regards to the two companies teaming up.

“Our collaboration with Graphite Bio is an exciting opportunity to further advance the field of curative gene correction by combining a targeted gene integration platform with our first-in-class targeted CD117 antibody, JSP191, that has already demonstrated preliminary clinical efficacy and safety as a conditioning agent in X-SCID patients and those with blood cancers undergoing allogeneic hematopoietic stem cell transplant.”

Graphite Bio is also developing gene editing technology to help treat sickle cell disease.  It is currently supported by a CIRM  late stage preclinical grant ($4.8M award). Th goal is to complete the final preclinical studies, which will allow Graphite Bio to start clinical studies of the sickle cell disease gene therapy in sickle cell patients in 2021.