From bench to bedside: a Q&A with stem cell expert Jan Nolta

At CIRM we are privileged to work with many remarkable people who combine brilliance, compassion and commitment to their search for new therapies to help people in need. One of those who certainly fits that description is UC Davis’ Jan Nolta.

This week the UC Davis Newsroom posted a great interview with Jan. Rather than try and summarize what she says I thought it would be better to let her talk for herself.

Jan Nolta
Jan Nolta

Talking research, unscrupulous clinics, and sustaining the momentum

(SACRAMENTO) —

In 2007, Jan Nolta returned to Northern California from St. Louis to lead what was at the time UC Davis’ brand-new stem cell program. As director of the UC Davis Stem Cell Program and the Institute for Regenerative Cures, she has overseen the opening of the institute, more than $140 million in research grants, and dozens upon dozens of research studies. She recently sat down to answer some questions about regenerative medicine and all the work taking place at UC Davis Health.

Q: Turning stem cells into cures has been your mission and mantra since you founded the program. Can you give us some examples of the most promising research?

I am so excited about our research. We have about 20 different disease-focused teams. That includes physicians, nurses, health care staff, researchers and faculty members, all working to go from the laboratory bench to patient’s bedside with therapies.

Perhaps the most promising and exciting research right now comes from combining blood-forming

stem cells with gene therapy. We’re working in about eight areas right now, and the first cure, something that we definitely can call a stem cell “cure,” is coming from this combined approach.

Soon, doctors will be able to prescribe this type of stem cell therapy. Patients will use their own bone marrow or umbilical cord stem cells. Teams such as ours, working in good manufacturing practice facilities, will make vectors, essentially “biological delivery vehicles,” carrying a good copy of the broken gene. They will be reinserted into a patient’s cells and then infused back into the patient, much like a bone marrow transplant.

“Perhaps the most promising and exciting research right now comes from combining blood-forming stem cells with gene therapy.”

Along with treating the famous bubble baby disease, where I had started my career, this approach looks very promising for sickle cell anemia. We’re hoping to use it to treat several different inherited metabolic diseases. These are conditions characterized by an abnormal build-up of toxic materials in the body’s cells. They interfere with organ and brain function. It’s caused by just a single enzyme. Using the combined stem cell gene therapy, we can effectively put a good copy of the gene for that enzyme back into a patient’s bone marrow stem cells. Then we do a bone marrow transplantation and bring back a person’s normal functioning cells.

The beauty of this therapy is that it can work for the lifetime of a patient. All of the blood cells circulating in a person’s system would be repaired. It’s the number one stem cell cure happening right now. Plus, it’s a therapy that won’t be rejected. These are a patient’s own stem cells. It is just one type of stem cell, and the first that’s being commercialized to change cells throughout the body.

Q: Let’s step back for a moment. In 2004, voters approved Proposition 71. It has funded a majority of the stem cell research here at UC Davis and throughout California. What’s been the impact of that ballot measure and how is it benefiting patients?

We have learned so much about different types of stem cells, and which stem cell will be most appropriate to treat each type of disease. That’s huge. We had to first do that before being able to start actual stem cell therapies. CIRM [California Institute for Regenerative Medicine] has funded Alpha Stem Cell Clinics. We have one of them here at UC Davis and there are only five in the entire state. These are clinics where the patients can go for high-quality clinical stem cell trials approved by the FDA [U.S. Food and Drug Administration]. They don’t need to go to “unapproved clinics” and spend a lot of money. And they actually shouldn’t.

“By the end of this year, we’ll have 50 clinical trials.”

By the end of this year, we’ll have 50 clinical trials [here at UC Davis Health]. There are that many in the works.

Our Alpha Clinic is right next to the hospital. It’s where we’ll be delivering a lot of the immunotherapies, gene therapies and other treatments. In fact, I might even get to personally deliver stem cells to the operating room for a patient. It will be for a clinical trial involving people who have broken their hip. It’s exciting because it feels full circle, from working in the laboratory to bringing stem cells right to the patient’s bedside.

We have ongoing clinical trials for critical limb ischemia, leukemia and, as I mentioned, sickle cell disease. Our disease teams are conducting stem cell clinical trials targeting sarcoma, cellular carcinoma, and treatments for dysphasia [a swallowing disorder], retinopathy [eye condition], Duchenne muscular dystrophy and HIV. It’s all in the works here at UC Davis Health.

There’s also great potential for therapies to help with renal disease and kidney transplants. The latter is really exciting because it’s like a mini bone marrow transplant. A kidney recipient would also get some blood-forming stem cells from the kidney donor so that they can better accept the organ and not reject it. It’s a type of stem cell therapy that could help address the burden of being on a lifelong regime of immunosuppressant drugs after transplantation.

Q: You and your colleagues get calls from family members and patients all the time. They frequently ask about stem cell “miracle” cures. What should people know about unproven treatments and unregulated stem cell clinics?

That’s a great question.The number one rule is that if you’re asked to pay money for a stem cell treatment, don’t do it. It’s a big red flag.

When it comes to advertised therapies: “The number one rule is that if you’re asked to pay money for a stem cell treatment, don’t do it. It’s a big red flag.”

Unfortunately, there are unscrupulous people out there in “unapproved clinics” who prey on desperate people. What they are delivering are probably not even stem cells. They might inject you with your own fat cells, which contain very few stem cells. Or they might use treatments that are not matched to the patient and will be immediately rejected. That’s dangerous. The FDA is shutting these unregulated clinics down one at a time. But it’s like “whack-a-mole”: shut one down and another one pops right up.

On the other hand, the Alpha Clinic is part of our mission is to help the public get to the right therapy, treatment or clinical trial. The big difference between those who make patients pay huge sums of money for unregulated and unproven treatments and UC Davis is that we’re actually using stem cells. We produce them in rigorously regulated cleanroom facilities. They are certified to contain at least 99% stem cells.

Patients and family members can always call us here. We can refer them to a genuine and approved clinical trial. If you don’t get stem cells at the beginning [of the clinical trial] because you’re part of the placebo group, you can get them later. So it’s not risky. The placebo is just saline. I know people are very, very desperate. But there are no miracle cures…yet. Clinical trials, approved by the FDA, are the only way we’re going to develop effective treatments and cures.

Q: Scientific breakthroughs take a lot of patience and time. How do you and your colleagues measure progress and stay motivated?   

Motivation?  “It’s all for the patients.”

It’s all for the patients. There are not good therapies yet for many disorders. But we’re developing them. Every day brings a triumph. Measuring progress means treating a patient in a clinical trial, or developing something in the laboratory, or getting FDA approval. The big one will be getting biological license approval from the FDA, which means a doctor can prescribe a stem cell or gene therapy treatment. Then it can be covered by a patient’s health insurance.

I’m a cancer survivor myself, and I’m also a heart patient. Our amazing team here at UC Davis has kept me alive and in great health. So I understand it from both sides. I understand the desperation of “Where do I go?” and “What do I do right now?” questions. I also understand the science side of things. Progress can feel very, very slow. But everything we do here at the Institute for Regenerative Cures is done with patients in mind, and safety.

We know that each day is so important when you’re watching a loved one suffer. We attend patient events and are part of things like Facebook groups, where people really pour their hearts out. We say to ourselves, “Okay, we must work harder and faster.” That’s our motivation: It’s all the patients and families that we’re going to help who keep us working hard.

Hits and Myths as people celebrate Stem Cell Awareness Day

UC Davis #1

Stem Cell Awareness Day at UC Davis

Every year, the second Wednesday in October is set aside as Stem Cell Awareness Day, a time to celebrate the progress being made in the field and to remind us of the challenges that lie ahead.

While the event began here in California in 2008, with then-Governor Arnold Schwarzenegger highlighting the work of CIRM, saying: ”The discoveries being made today in our Golden State will have a great impact on many around the world for generations to come.” It has since grown to become a global event.

Here in California, for example, UC Davis and the University of Southern California (USC) both held events to mark the day.

At UC Davis Jan Nolta, PhD., the Director of the Stem Cell Program, introduced a series of speakers who highlighted the terrific work being done at the university. Peter Belafsky talked about using stem cells to repair damaged trachea and to help people who are experiencing voice or swallowing disorders. Mark Lee highlighted the progress being made in using stem cells to repair hard-to-heal broken bones. Aijun Wang focused on some really exciting work that could one day lead to a therapy for spina bifida (including some ridiculously cute video of English bulldogs who are able to walk again because of this therapy.)

USC hosted 100 local high school students for a panel presentation and discussion about careers in stem cell research. The panel featured four scientists talking about their experience, why the students should think about a career in science and how to go about planning one. USC put together a terrific video of the researchers talking about their experiences, something that can help any student around the US consider becoming part of the future of stem cell research.

Similar events were held in other institutions around California. But the celebration wasn’t limited to the Golden State. At the Texas Heart Institute in Houston, Texas, they held an event to talk to the public about the clinical trials they are supporting using stem cells to help people suffering from heart failure or other heart-related issues.

RegMedNet

Finally, the UK-based RegMedNet, a community site that unites the diverse regenerative medicine community, marked the day by exploring some of the myths and misconceptions still surrounding stem cells and stem cell research.

You can read those here.

Every group takes a different approach to celebrating Stem Cell Awareness Day, but each is united by a common desire, to help people understand the progress being made in finding new treatments and even cures for people with unmet medical needs.

A brief history of the Stem Cell Agency

On Wednesday, August 15 the California State Assembly Select Committee on Biotechnology held an informational hearing on CIRM as part of its mission of ensuring the legislature is up to date and informed about the biotech industry in California. The committee heard from CIRM’s President and CEO Dr. Maria T. Millan and the Vice Chair of our Board, Senator Art Torres (Ret.); two of CIRM’s Patient Advocates (Pawash Priyank and Don Reed) and Dr. Jan Nolta, the Director of the Institute for Regenerative Cures at UC Davis.

The final speaker was David Jensen, whose California Stem Cell Report blog has charted the history of CIRM since its inception. At CIRM we know that not everyone agrees with us all the time, or supports all the decisions we have made in the years since we were approved by voters in 2004, but we do pride ourselves on being open to a thoughtful, vigorous debate on all aspects of stem cell research. David’s presentation to the committee was nothing if not thoughtful, and we thought you might enjoy reading it and so we are presenting it here in its entirety.

For those who prefer to watch than read, here is a video of the entire hearing:

https://www.assembly.ca.gov/media/assembly-select-committee-biotechnology-20180815/video

California’s Stem Cell “Gold Rush:” A Brief Overview of the State’s $3 Billion Stem Cell Agency
Prepared testimony by David Jensen, publisher/editor of the California Stem Cell Report, before the Assembly Select Committee on Biotechnology, Aug. 15, 2018
I was in Mazatlan in Mexico in the fall of 2004 when I first heard about the creation of
California’s stem cell agency. I was reading the Wall Street Journal online and saw a headline that said a new Gold Rush was about to begin in California — this one involving stem cells instead of nuggets.

“Holy Argonauts,” I said to myself, using the term, of course, that refers to the tens of thousands of people who rushed to the California gold fields in 1849. I wanted to know more about what was likely to happen with this new stem cell gold rush.

Today, nearly 14 years later, I still want to know more about the California Institute for
Regenerative Medicine or CIRM, as the agency is formally known. But I can tell you that certain facts are clear.

Borrowing and Autonomy
The agency is unique in California history and among the states throughout the nation. It is the first state agency to fund scientific research with billions of dollars – all of it borrowed. At one point in its history, it is safe to say that the agency was the largest single source of funding in the world for human embryonic stem cell research.

The agency operates with financial and oversight autonomy that is rare in California government, courtesy of the ballot initiative that created it. But that measure also proved to be both a blessing and a curse. The agency’s financial autonomy has allowed it to provide a reasonably steady stream of cash over a number of years, something that is necessary to sustain the long-term research that is critical for development of widely available treatments.

At the same time, the ballot measure carried the agency’s death warrant — no more money after the $3 billion was gone. Cash for new awards is now expected to run out at the end of next year. Over its life, the agency has had a national and somewhat more modestly global impact, both as a source of funding and international cooperation, but also in staying the course on human embryonic stem cell research when the federal government was backing away from it.

Beyond that, the stem cell agency is the only state department whose primary objective is to produce a marketable commercial product. In this case, a cure or treatment for afflictions now nearly untreatable.

Finally, I am all but certain that CIRM is the only state agency that takes back money when a project winds up on the rocks. By the end of last month, that figure totalled in recent years more than $34 million in two big categories of awards. This sort of cash recovery is not a practice that occurs with federal research dollars. With CIRM the money goes back into the pot for more research aimed at treating horrible afflictions.

Evaluations of the Research Effort
Nonetheless the agency has hit some shoals from time to time. In 2010, the agency’s governing board commissioned a $700,000 study of its efforts by the prestigious Institute of Medicine. Two years later, the IOM reported to CIRM that it had some significant flaws.

The IOM study said that the agency had “achieved many notable results.” But it also
recommended sweeping changes to remove conflict of interest problems, clean up a troubling dual-executive arrangement and fundamentally change the nature of the governing board.

The report said,“Far too many board members represent organizations that receive CIRM funding or benefit from that funding. These competing personal and professional interests compromise the perceived independence of the ICOC (the CIRM governing board), introduce potential bias into the board’s decision making, and threaten to undermine confidence in the board.”

The conflict issues are built in by the ballot measure, which gave potential recipient institutions seats on the 29-member governing board. Indeed, in 2017, the last time I calculated the correlation between the board and awards, roughly 90 percent of the money given out by CIRM had gone to institutions with ties to members of the governing board.

About two months after the IOM presented its report, the CIRM board approved a new policy that bars 13 of its 29 members from voting on any grants whatsoever to help deal with questions concerning conflicts of interest on the board.

Other studies about the agency’s performance resulted from a 2010 law in which the legislature modified the initiative to require triennial performance audits that would be paid for by the agency itself. The requirement specifically excluded “scientific performance” from the audit.

The first audit results came in 2012 and contained 27 recommendations for improvement. The most recent performance audit came last spring. The audit firm, Moss Adams, recommended improvements in the areas of private fund-raising, retention of staff and better utilization of board members. The board was told that the agency had made “incredible progress” and that the auditors “usually see a lot of good things.”

The Story of CIRM 2.0
In recent years the agency has been on a self-improvement regime. The effort began in 2014 and was dubbed CIRM 2.0 — a term that was originally coined by a stem cell researcher at UC Davis.

The new direction and emphasis was described by the agency as “radical.” It was aimed at improving speed, efficiency and innovation. And it seems to have largely succeeded.
In 2014, it took almost two years for a good idea to go from application to the final funding stage. The goal was to shorten that to 120 days. Delays in funding are of particular concern to businesses, often for cash flow reasons, but they also mean delays in actually developing a treatment.

This week, the agency said the cash delivery figure now stands at less than 90 days for clinical awards and about 120 days for translational awards.

In 2014, the agency was participating in nine clinical trials, the last stage before a treatment is certified by the federal government for widespread use. Today the agency is involved in 49. In 2014, about 50 patients were involved in those trials. Today the figure is more than 800.

One of the more interesting aspects of CIRM 2.0 marked a departure from what might be called an academic pass-fail approach to the “final exam” for applications from scientists. Instead, CIRM is engaged in a more partner-oriented approach that can be found in some businesses.

Instead of flatly failing an application that is not quite ready for prime time, the idea is to coach applicants along to help bring them up to approval level. Today the agency can count 30 applications that won approval through that process. All of which is work could have slipped away in the more distant past.

CIRM and the Biotech Biz
CIRM is now much more engaged with industry than during its earlier years, when it drew bitter criticism from some business executives. Engagement with biotech firms is critical to bringing a treatment to the public. CIRM is not in the business of actually manufacturing, marketing and selling products. That is a matter left to the private sector.

One reason for closer business connections involves maturation of the work in the field, which has brought research closer to reality. But it is also due to a different focus within the agency as top management has changed.

One of the more difficult areas involving stem cell research and likely treatments is their cost. It is rare to hear researchers or companies talk forthrightly in public about specific dollar amounts. But the cost of drugs and treatment are high visibility matters for patients and elected officials. And estimates of stem cell treatments have run up to at least $900,000.

In 2010, the California legislature moved to help assure affordability by requiring grantees to submit affordable access plans with the caveat that the agency could waive that requirement. How that will ultimately play out as actual products come into the marketplace is yet to be determined.

The Public Policy Questions
A number of significant public policy questions surround the California’s stem cell program involving its creation and execution. They include:
● Is a ballot initiative the best way to approach research and create new state programs?
The initiative is very difficult to alter when changes are needed or priorities change. .
● Does the state have higher health priorities, such as prenatal health care, than supplying
researchers with cash that they could well secure from other sources?
● Is borrowing money to finance the research the best way to go about it? The interest
expense raise the total cost of a $20 million research award to $40 million.
● Should executives of potential recipient institutions serve on the board that awards their employers hundreds of millions of dollars?

This is just a short list of some of the policy matters. Other questions can and should be asked in the wake of the agency’s nearly 14 years of work.

Lives Saved but No Widespread Therapies
Returning to our earlier list of the clear facts about CIRM, another fact is that lives have been saved as the result of clinical trials that the agency it has helped to finance. The youngster from Folsom mentioned earlier in this hearing is one of a number of cases.

That said, these patients received treatment in clinical trials, which may or may not succeed in producing a commercial product that is available to the general public.

Little doubt exists that the agency has advanced the stem cell field and is building towards a critical mass in California. The burgeoning research program at UC Davis, with $138 million in CIRM funding, is one example. Another is the $50 million Alpha Clinic network aimed at creating powerful collaboration within institutions and throughout the state. In addition to Davis, UC San Francisco, UCLA, UC Irvine, UC San Diego and the City of Hope in the Los Angeles area are all part of the Alpha network.

Nonetheless, CIRM has not yet backed a stem cell treatment that is ready for widespread use and fulfilled the voter expectations from 2004 that stem cell cures were right around the corner.

The agency itself also has something of a deadline that is right around the corner in political and scientific terms. Backers of the agency are hoping for another ballot initiative in November 2020 that would pump $5 billion into the program and stave off its slow demise as research winds down. Development of a stem cell treatment that would resonate with voters would be an invaluable development to encourage voters to continue this unique experiment — even if California’s stem cell gold rush does not quite measure up to the dramatic events of 169 years ago.
#######################

UC Davis Stem Cell Director Jan Nolta Shares Her Thoughts on the Importance of Mentoring Young Scientists

Dr. Jan Nolta (UC Davis Health)

Jan Nolta is a scientific rockstar. She is a Professor at UC Davis and the Director of the Stem Cell Program at the UC Davis School of Medicine. Her lab’s research is dedicated to developing stem cell-based treatments for Huntington’s disease (HD). Jan is a tireless advocate for both stem cell and HD research and you’ll often see her tweeting away about the latest discoveries in the field to her followers.

What I admire most about Dr. Nolta is her dedication to educating and mentoring young students. Dr. Nolta helped write the grant that funded the CIRM Bridges master’s program at Sacramento State in 2009. Over the years, she has mentored many Bridges students (we blogged about one student earlier this year) and also high school students participating in CIRM’s SPARK high school internship program. Many of her young trainees have been accepted to prestigious colleges and universities and gone on to pursue exciting careers in STEM.

I reached out to Dr. Nolta and asked her to share her thoughts on the importance of mentoring young scientists and supporting their career ambitions. Below is a summary of our conversation. I hope her passion and devotion will inspire you to think about how you can get involved with student mentorship in your own career.


Describe your career path from student to professor.

I was an undergraduate student at Sacramento State University. I was a nerdy student and did research on sharks. I was planning to pursue a medical degree, but my mentor, Dr. Laurel Heffernan, encouraged me to consider science. I was flabbergasted at the suggestion and asked, “people pay you to do this stuff??” I didn’t know that you could be paid to do lab research. My life changed that day.

I got my PhD at the University of Southern California. I studied stem cell gene therapy under Don Kohn, who was a fabulous mentor. After that, I worked in LA for 15 years and then went back home to UC Davis in 2007 to direct their Stem Cell Program.

It was shortly after I got to Davis that I reconnected with my first mentor, Dr. Heffernan, and we wrote the CIRM Bridges grant. Davis has a large shared translational lab with seven principle investigators including myself and many of the Bridges students work there. Being a scientist can be stressful with grant deadlines and securing funding. Mentoring students is the best part of the job for me.

Why is it important to fund educational programs like Bridges and SPARK?

There is a serious shortage of well-trained specialists in regenerative medicine in all areas of the workforce. The field of regenerative medicine is still relatively new and there aren’t enough people with the required skills to develop and manufacture stem cell treatments. The CIRM Bridges program is critical because it trains students who will fill those key manufacturing and lab manager jobs. Our Bridges program at Sacramento State is a two-year master’s program in stem cell research and lab management. They are trained at the UC Davis Good Manufacturing Practice (GMP) training facility and learn how to make induced pluripotent stem cells (iPSCs) and other stem cell products. There aren’t that many programs like ours in the country and all of our students get competitive job offers after they complete our program.

We are equally passionate about our high school SPARK program. It’s important to capture students’ interests early whether they want to be a scientist or not. It’s important they get exposed to science as early as possible and even if they aren’t going to be a scientist or healthcare professional, it’s important that they know what it’s about. It’s inspiring how many of these students stay in STEM (Science, Technology, Engineering and Math) because of this unique SPARK experience.

Jan Nolta with the 2016 UC Davis SPARK students.

Can you share a student success story?

I’m so proud of Ranya Odeh. She was a student in our 2016 SPARK program who worked in my lab. Ranya received a prestigious scholarship to Stanford largely due to her participation in the CIRM SPARK program. I got to watch her open the letter on Instagram, and it was a really incredible experience to share that part of her life.

I’m also very proud of our former Bridges student Jasmine Carter. She was a mentor to one of our SPARK students Yasmine this past summer. She was an excellent role model and her passion for teaching and research was an inspiration to all of us. Jasmine was hoping to get into graduate school at UC Davis this fall. She not only was accepted into the Neuroscience Graduate Program, but she also received a prestigious first year program fellowship!

UC Davis Professors Jan Nolta and Kyle Fink with CIRM Bridges student Jasmine Carter

[Side note: We’ve featured Ranya and Jasmine previously on the Stem Cellar and you can read about their experiences here and here.]

Why is mentoring important for young students?

I can definitely relate to the importance of having a mentor. I was raised by a single mom, and without scholarships and great mentors, there’s no way I would be where I am today. I’m always happy to help other students who think maybe they can’t do science because of money, or because they think that other people know more than they do or are better trained. Everybody who wants to work hard and has a passion for science deserves a chance to shine. I think these CIRM educational programs really help the students see that they can be what they dream they can be.

What are your favorite things about being a mentor?

Everyday our lab is full of students, science, laughter and fun. I love coming in to the lab. Our young people bring new ideas, energy and great spirit to our team. I think every team should have young trainees and high school kids working with them because they see things in a different way.

Do you have advice for mentoring young scientists?

You can sum it up in one word: Listen. Ask them right away what their dreams are, where do they imagine themselves in the future, and how can you help them get there. Encourage them to always ask questions and let them know that they aren’t bothering you when they do. I also let my students know that I’m happy to be helping them and that the experience is rewarding for me as well.

So many students are shy when they first start in the lab and don’t get all that they can out of the experience. I always tell my students of any age: what you really want to do is try in life. Follow your tennis ball. Like when a golden retriever sees a tennis ball going by, everything else becomes secondary and they follow that ball. You need to find what that tennis ball is for you and then just try to follow it.

What advice can you give to students who want to be scientific professors or researchers?

Find somebody who is a good mentor and cares about you. Don’t go into a lab where the Principle Investigator (PI) is not there most of the time. You will get a lot more out of the experience if you can get input from the PI.

A good mentor is more present in the lab and will take you to meetings and introduce you to people. I find that often students read papers from well-established scientists, and they think that their positions are unattainable. But if they can meet them in person at a conference or a lecture, they will realize that all of the established scientists are people too. I want young students to know that they can do it too and these careers are attainable for anybody.

New CIRM Alpha Stem Cell Clinic offers HOPE for boys with deadly disease

UC Davis Institute for Regenerative Cures

For people battling Duchenne Muscular Dystrophy (DMD), a rare and fatal genetic disorder that slowly destroys muscles, hope has often been in short supply. There is no cure and treatments are limited. But now a new clinical trial at the site of one of the newest CIRM Alpha Stem Cell Clinic Network members could change that.

The HOPE-2 clinical trial has treated its first patient at UC Davis Medical Center, inaugurating the institution’s Alpha Stem Cell Clinic. The clinic is part of a CIRM-created network of top California medical centers that specialize in delivering stem cell clinical trials to patients. The key to the Network’s success is the ability to accelerate the delivery of treatments to patients through partnerships with patients, medical providers and clinical trial sponsors.

UC Davis is one of five medical centers that now make up the network (the others are UC San Francisco, UCLA/UC Irvine, UC San Diego and City of Hope).

Jan NoltaIn a news release, Jan Nolta, the director of the UC Davis Institute for Regenerative Cures, says the UC Davis Alpha Clinic is well equipped to move promising therapies out of the lab and into clinical trials and people.

“We have the full range of resource experts in regenerative medicine, from the cellular to the clinical trials level. We’re also excited about the prospect of being able to link with other Alpha Stem Cell Clinics around the state to help speed the process of testing and refining treatments so we can get therapies to patients in need.”

The news of this first patient is a cause for double celebration at CIRM. The trial is run by Capricor and CIRM funded the first phase of this work. You can read the story of Caleb Sizemore, who took part in that trial or watch this video of him talking about his fight.

When the CIRM Board approved funding for the UC Davis Alpha Clinic in October of 2017, Abla Creasey, CIRM’s Vice President for Therapeutics and Strategic Infrastructure, said:

“The Alpha Clinics are a one-of-a-kind network that gives patients access to the highest quality stem cell trials for a breadth of diseases including cancer, diabetes, heart disease and spinal cord injury. Expanding our network will allow more patients to participate in stem cell trials and will advance the development of stem cell treatments that could help or possibly cure patients.”

The UC Davis Alpha Clinic provides a one-stop shop for delivering stem cell therapies, gene therapies and immunotherapies, as well as conducting follow-up visits. It’s this type of CIRM-funded infrastructure that helps steer potential clinical trial participants away from illegitimate, unproven and potentially harmful fee-for-service stem cell treatments.

The DMD trial is the first of what we are confident will be many high-quality trials at the Clinic, bringing promising stem cell therapies to patients with unmet medical needs.

 

The Journey of a Homegrown Stem Cell Research All-Star

Nothing makes a professional sports team prouder than its homegrown talent. Training and mentoring a promising, hard-working athlete who eventually helps carry the team to a championship can lift the spirits of an entire city.

Gerhard and Brian 1

Brian Fury

Here at CIRM, we hold a similar sense of pride in Brian Fury, one of our own homegrown all-stars. Nearly a decade ago, Brian was accepted into the inaugural class of CIRM’s Bridges program which provides paid stem cell research internships to students at California universities and colleges that don’t have major stem cell research programs. The aim of the program, which has trained over 1200 students to date, is to build the stem cell work force here in California to accelerate stem cell treatments to patients with unmet medical needs.

A CIRM full circle
Today, Brian is doing just that as manager of manufacturing at the UC Davis Institute for Regenerative Cures (IRC) where he leads the preparation of stem cell therapy products for clinical trials in patients. It was at UC Davis that he did his CIRM Bridges internship as a Sacramento State masters student back in 2009. So, he’s really come full circle, especially considering he currently works in a CIRM-funded facility and manufactures stem cell therapy products for CIRM-funded clinical trials.

gerhardbauer

Gerhard Bauer

“Many of the technicians we have in the [cell manufacturing] facility are actually from the Bridges program CIRM has funded, and were educated by us,” Gerhard Bauer, Brian’s boss and director of the facility, explained to me. “Brian, in particular, has made me incredibly proud. To witness that the skills and knowledge I imparted onto my student would make him such an integral part of our program and would lead to so many novel products to be administered to people, helping with so many devastating diseases is a very special experience. I treasure it every day.”

“It sustains me”
Brian’s career path wasn’t always headed toward stem cell science. In a previous life, he was an undergrad in computer management information systems. It was a required biology class at the time that first sparked his interest in the subject. He was fascinated by the course and was inspired by his professor, Cathy Bradshaw. He still recalls a conversation he had with her to better understand her enthusiasm for biology:

“I asked her, ‘what is it about biology that really made you decide this is what you wanted to do?’ And she just said, ‘It sustains me. It is air in my lungs.’ It was what she lived and breathed. That really stuck with me early on.“

Still, Brian went on to earn his computer degree and worked as a computer professional for several years after college. But when the dot com boom went bust in the early 2000’s, Brian saw it as a sign to re-invent himself. Remembering that course with Professor Bradshaw, he went back to school to pursue a biology degree at Sacramento State University.

On a path before there was a path
Not content with just his textbooks and lectures at Sac State, Brian offered to volunteer in any lab he could find, looking for opportunities to get hands-on experience:

Sac State 1

Brian at work during his Sacramento State days.

“I was really hungry to get involved and I really wanted to not just be in class and learning about all these amazing things in biology but I also wanted to start putting them to work. And so, I looked for any opportunity that I could to become actively involved in actually seeing how biology really works and not just the theory.”

This drive to learn led to several volunteer stints in labs on campus as well as a lab manager job. But it was an opportunity he pursued as he was finishing up his degree that really set in motion his current career path. Gerhard Bauer happened to be giving a guest lecture at Sac State about UC Davis’ efforts to develop a stem cell-based treatment for HIV. Hearing that talk was an epiphany for Brian. “That’s really what hooked me in and helped determine that this is definitely the field that I want to enter into. It was my stepping off point.”

GerhardBrianJan

Brian Fury (center) flanked by mentors Gerhard Bauer (left) and Jan Nolta (right)

Inspired, Brian secured a volunteering gig on that project at UC Davis – along with all his other commitments at Sac State – working under Bauer and Dr. Jan Nolta, the director of the UC Davis Stem Cell Program.

That was 2008 and this little path Brian was creating by himself was just about to get some serious pavement. The next year, Sacramento State was one of sixteen California schools that was awarded the CIRM Bridges to Stem Cell Research grant. Their five-year, $3 million award (the total CIRM investment for all the schools was over $55 million) helped support a full-blown, stem cell research-focused master’s program which included 12-month, CIRM-funded internships. One of the host researchers for the internships was, you guessed it, Jan Nolta at UC Davis.

Good Manufacturing Practice (GMP) was a good move
Applying to this new program was a no brainer for Brian and, sure enough, he was one of ten students selected for the first-year class. His volunteer HIV project in the Nolta lab seamlessly dovetailed into his Bridges internship project. He was placed under the mentorship of Dr. Joseph Anderson, a researcher in the Nolta lab at the time, and gained many important skills in stem cell research. Brian’s project focused on a stem cell and gene therapy approach to making HIV-resistant immune cells with the long-term goal of eradicating the virus in patients. In fact, follow on studies by the Anderson lab have helped lead to a CIRM-funded clinical trial, now underway at UC Davis, that’s testing a stem cell-based treatment for HIV/AIDs patients.

After his Bridges internship came to a close, Brian worked on a few short-term research projects at UC Davis but then found himself in a similar spot: needing to strike out on a career path that wasn’t necessarily clearly paved. He reached out to Nolta and Bauer and basically cut to the chase in an email asking, “do you know anybody?”. Bauer reply immediately, “yeah, me!”. It was late 2011 and UC Davis had built a Good Manufacturing Practice (GMP) facility with the help of a CIRM Major Facility grant. Bauer only had one technician at the time and work was starting to pick up.

gmp_facility

The Good Manufacturing Practice (GMP) facility in UC Davis’ Institute for Regenerative Cures.

A GMP facility is a specialized laboratory where clinical-grade cell products are prepared for use in people. To ensure the cells are not contaminated, the entire lab is sealed off from the outside environment and researchers must don full-body lab suits. We produced the video below about the GMP facility just before it opened.

Bauer knew Brian would be perfect at their GMP facility:

“Brian was a student in the first cohort of CIRM Bridges trainees and took my class Bio225 – stem cell biology and manufacturing practices. He excelled in this class, and I also could observe his lab skills in the GMP training part incorporated in this class. I was very lucky to be able to hire Brian then, since I knew what excellent abilities he had in GMP manufacturing.”

CIRM-supported student now supporting CIRM-funded clinical trials

brianingmp

Brian Fury suited up in GMP facility

Since then, Brian has worked his way up to managing the entire GMP facility and its production of cell therapy products. At last count, he and the five people he supervises are juggling sixteen cell manufacturing projects. One of his current clients is Angiocrine which has a CIRM-funded clinical trial testing a cell therapy aimed to improve the availability and engraftment of blood stem cell transplants. This treatment is geared for cancer patients who have had their cancerous bone marrow removed by chemotherapy.

When a company like Angiocrine approaches Brian at the GMP facility, they already have a well-defined method for generating their cell product. Brian’s challenge is figuring out how to scale up that process to make enough cells for all the patients participating in the clinical trial. And on top of that, he must design the procedures for the clean room environment of the GMP facility, where every element of making the cells must be written down and tracked to demonstrate safety to the Food and Drug Administration (FDA).

The right time, the right place…and a whole bunch of determination and passion
It’s extremely precise and challenging work but that’s what makes it so exciting for Brian. He tells me he’s never bored and always wakes up looking forward to what each day’s challenges will bring and figuring out how he and his team are going get these products into the clinic. It’s a responsibility he takes very seriously because he realizes what it means for his clients:

“I invest as much energy and passion and commitment into these projects as I would my own family. This is extremely important to me and I feel so incredibly fortunate to have the opportunity to work on things like this. The reality is, in the GMP, people are bringing their life’s work to us in the hopes we can help people on the other end. They share all their years of development, knowledge and experience and put it in our hands and hope we can scale this up to make it meaningful for patients in need of these treatments.”

Despite all his impressive accomplishments, Brian is a very modest guy using phrases like “I was just in the right place at the right time,” during our conversation. But I was glad to hear him add “and I was the right candidate”. Because it’s clear to me that his determination and passion are the reasons for his success and is the epitome of the type of researcher CIRM had hoped its investment in the Bridges program and our SPARK high school internship program would produce for the stem cell research field.

That’s why we’ll be brimming over with an extra dose of pride on the day that one of Brian’s CIRM-funded stem cell therapy products reaches the goal line with an FDA approval.

Trash talking and creating a stem cell community

imilce2

Imilce Rodriguez-Fernandez likes to talk trash. No, really, she does. In her case it’s cellular trash, the kind that builds up in our cells and has to be removed to ensure the cells don’t become sick.

Imilce was one of several stem cell researchers who took part in a couple of public events over the weekend, on either side of San Francisco Bay, that served to span both a geographical and generational divide and create a common sense of community.

The first event was at the Buck Institute for Research on Aging in Marin County, near San Francisco. It was titled “Stem Cell Celebration” and that’s pretty much what it was. It featured some extraordinary young scientists from the Buck talking about the work they are doing in uncovering some of the connections between aging and chronic diseases, and coming up with solutions to stop or even reverse some of those changes.

One of those scientists was Imilce. She explained that just as it is important for people to get rid of their trash so they can have a clean, healthy home, so it is important for our cells to do the same. Cells that fail to get rid of their protein trash become sick, unhealthy and ultimately stop working.

Imilce is exploring the cellular janitorial services our bodies have developed to deal with trash, and trying to find ways to enhance them so they are more effective, particularly as we age and those janitorial services aren’t as efficient as they were in our youth.

Unlocking the secrets of premature aging

Chris Wiley, another postdoctoral researcher at the Buck, showed that some medications that are used to treat HIV may be life-saving on one level, preventing the onset of full-blown AIDS, but that those benefits come with a cost, namely premature aging. Chris said the impact of aging doesn’t just affect one cell or one part of the body, but ripples out affecting other cells and other parts of the body. By studying the impact those medications have on our bodies he’s hoping to find ways to maintain the benefits of those drugs, but get rid of the downside.

Creating a Community

ssscr

Across the Bay, the U.C. Berkeley Student Society for Stem Cell Research held it’s 4th annual conference and the theme was “Culturing a Stem Cell Community.”

The list of speakers was a Who’s Who of CIRM-funded scientists from U.C. Davis’ Jan Nolta and Paul Knoepfler, to U.C. Irvine’s Henry Klassen and U.C. Berkeley’s David Schaffer. The talks ranged from progress in fighting blindness, to how advances in stem cell gene editing are cause for celebration, and concern.

What struck me most about both meetings was the age divide. At the Buck those presenting were young scientists, millennials; the audience was considerably older, baby boomers. At UC Berkeley it was the reverse; the presenters were experienced scientists of the baby boom generation, and the audience were keen young students representing the next generation of scientists.

Bridging the divide

But regardless of the age differences there was a shared sense of involvement, a feeling that regardless of which side of the audience we are on we all have something in common, we are all part of the stem cell community.

All communities have a story, something that helps bind them together and gives them a sense of common purpose. For the stem cell community there is not one single story, there are many. But while those stories all start from a different place, they end up with a common theme; inspiration, determination and hope.

 

Cell mate: the man who makes stem cells for clinical trials

When we announced that one of the researchers we fund – Dr. Henry Klassen at the University of California, Irvine – has begun his clinical trial to treat the vision-destroying disease retinitis pigmentosa, we celebrated the excitement felt by the researchers and the hope from people with the disease.

But we missed out one group. The people who make the cells that are being used in the treatment. That’s like praising a champion racecar driver for their skill and expertise, and forgetting to mention the people who built the car they drive.

Prof. Gerhard Bauer

Prof. Gerhard Bauer

In this case the “car” was built by the Good Manufacturing Practice (GMP) team, led by Prof. Gerhard Bauer, at the University of California Davis (UC Davis).

Turns out that Gerhard and his team have been involved in more than just one clinical trial and that the work they do is helping shape stem cell research around the U.S. So we decided to get the story behind this work straight from the horse’s mouth (and if you want to know why that’s a particularly appropriate phrase to use here read this previous blog about the origins of GMP)

When did the GMP facility start, what made you decide this was needed at UC Davis?

Gerhard: In 2006 the leadership of the UC Davis School of Medicine decided that it would be important for UC Davis to have a large enough manufacturing facility for cellular and gene therapy products, as this would be the only larger academic GMP facility in Northern CA, creating an important resource for academia and also industry. So, we started planning the UC Davis Institute for Regenerative Cures and large GMP facility with a team of facility planners, architects and scientists, and by 2007 we had our designs ready and applied for the CIRM major facilities grant, one of the first big grants CIRM offered. We were awarded the grant and started construction in 2008. We opened the Institute and GMP facility in April of 2010.

How does it work? Do you have a number of different cell lines you can manufacture or do people come to you with cell lines they want in large numbers?

Gerhard: We perform client driven manufacturing, which means the clients tell us what they need manufactured. We will, in conjunction with the client, obtain the starting product, for instance cells that need to undergo a manufacturing process to become the final product. These cells can be primary cells or also cell lines. Cell lines may perhaps be available commercially, but often it is necessary to derive the primary cell product here in the GMP facility; this can, for instance, be done from whole donor bone marrow, from apheresis peripheral blood cells, from skin cells, etc.

How many cells would a typical – if there is such a thing – order request?

Gerhard: This depends on the application and can range from 1 million cells to several billions of cells. For instance, for an eye clinical trial using autologous (from the patient themselves) hematopoietic stem and progenitor cells, a small number, such as a million cells may be sufficient. For allogeneic (from an unrelated donor) cell banks that are required to treat many patients in a clinical trial, several billion cells would be needed. We therefore need to be able to immediately and adequately adjust to the required manufacturing scale.

Why can’t researchers just make their own cells in their own lab or company?

Gerhard: For clinical trial products, there are different, higher, standards than apply for just research laboratory products. There are federal regulations that guide the manufacturing of products used in clinical trials, in this special case, cellular products. In order to produce such products, Good Manufacturing Practice (GMP) rules and regulations, and guidelines laid down by both the Food and Drug Administration (FDA) and the United States Pharmacopeia need to be followed.

The goal is to manufacture a safe, potent and non-contaminated product that can be safely used in people. If researchers would like to use the cells or cell lines they developed in a clinical trial they have to go to a GMP manufacturer so these products can actually be used clinically. If, however, they have their own GMP facility they can make those products in house, provided of course they adhere to the rules and regulations for product manufacturing under GMP conditions.

Besides the UC Irvine retinitis pigmentosa trial now underway what other kinds of clinical trials have you supplied cells for?

Gerhard: A UC Davis sponsored clinical trial in collaboration with our Eye Center for the treatment of blindness (NCT01736059), which showed remarkable vision recovery in two out of the six patients who have been treated to date (Park et al., PMID:25491299, ), and also an industry sponsored clinical gene therapy trial for severe kidney disease. Besides cellular therapy products, we also manufacture clinical grade gene therapy vectors and specialty drug formulations.

For several years we have been supplying clinicians with a UC Davis GMP facility developed formulation of the neuroactive steroid “allopregnanolone” that was shown to act on resident neuronal stem cells. We saved several lives of patients with intractable seizures, and the formulation is also applied in clinical trials for the treatment of traumatic brain injury, Fragile X syndrome and Alzheimer’s disease.

What kinds of differences are you seeing in the industry, in the kinds of requests you get now compared to when you started?

Gerhard: In addition, gene therapy vector manufacturing and formulation work is really needed by several clients. One of the UC Davis specialties is “next generation” gene-modified mesenchymal stem cells, and we are contacted often to develop those products.

Where will we be in five years?

Gerhard: Most likely, some of the Phase I/II clinical trials (these are early stage clinical trials with, usually, relatively small numbers of patients involved) will have produced encouraging results, and product manufacturing will need to be scaled up to provide enough cellular products for Phase III clinical trials (much larger trials with many more people) and later for a product that can be licensed and marketed.

We are already working with companies that anticipate such scale up work and transitioning into manufacturing for marketing; we are planning this upcoming process with them. We also believe that certain cellular products will replace currently available standard medical treatments as they may turn out to produce superior results.

What does the public not know about the work you do that you think they should know?

Gerhard: The public should know that UC Davis has the largest academic Good Manufacturing Practice Facility in Northern California, that its design was well received by the FDA, that we are manufacturing a wide variety of products – currently about 16 – that we are capable of manufacturing several products at one time without interfering with each other, and that we are happy to work with clients from both academia and private industry through both collaborative and Fee-for-Service arrangements.

We are also very proud to have, during the last 5 years, contributed to saving several lives with some of the novel products we manufactured. And, of course, we are extremely grateful to CIRM for building this state-of-the-art facility.

You can see a video about the building of the GMP facility at UC Davis here.