A spinal cord injury (SCI) is devastating, changing a person’s life in an instant. Every year, around the world, between 250,000 and 500,000 people suffer a spinal cord injury. Most of these are caused by trauma to the spinal column, thereby affecting the spinal cord’s ability to send and receive messages from the brain to the body’s systems that control sensory, motor and autonomic function below the level of injury.
Currently, there is nothing that completely reverses SCI damage and most treatment is aimed at rehabilitation and empowering patients to lead as normal a life as possible under the circumstances. Improved treatment options are necessary both to improve patients’ overall quality of life, and to reduce associated healthcare costs.
In 2010, the Geron trial became not only the first clinical trial to be funded by the California Institute for Regenerative Medicine (CIRM), but the first clinical trial in the world using embryonic stem cells.
By 2014, Asterias Biotherapeutics (now Lineage Cell Therapeutics Inc.), acquired the cell therapy assets of Geron and launched its Phase 1/2a clinical trial with the goal of determining the safety of the therapy and the optimal dose of cells to transplant into patients.
In 2016, Jake Javier became the fifth patient to participate in the revived Asterias trial. Regular readers of our blog will remember that Jake is the young man who broke his neck the day before he graduated high school, leaving him paralyzed from the upper chest down.
After enrolling in the CIRM-funded Asterias clinical trial, and receiving a transplant of ten million stem cells, Jake regained enough use of his arms and hands to be able to go to Cal Poly and start his life over.
This video highlights the struggles and challenges he faced in his first year, and his extraordinary spirit in overcoming them.
Video courtesy of Matt Yoon and his team at Cal Poly
Today, Jake is set to graduate from Duke University with his master’s degree in Biomedical Engineering, with plans to help those impacted by neurological injuries or disease.
Watch the video below to learn more about Jake’s personal perspective on his clinical trial participation, the OPC1 clinical study, his future plans and his message to the SCI community.
Ian Blong, Ph.D., CIRM San Francisco State University Bridges to Stem Cell Research Alumnus
Recently, The New York Times released a powerful article that tells the stories of four different families navigating the challenges of having a family member with a rare disease. One of these stories focused on Matt Wilsey, a tech entrepreneur and investor in California’s Silicon Valley, and his daughter Grace, who was born with an extremely rare genetic disorder named NGLY1 deficiency. This genetic disorder causes developmental delay, intellectual disability, seizures, and other movement issues.
Matt and Kristen Wilsey with their 10-year-old daughter Grace, who has a rare genetic disorder, at the Grace Science headquarters in Menlo Park, Calif. Image Credit: James Tensuan for The New York Times
Matt decided to put his entrepreneurial and networking skills to good use in order to form Grace Science Foundation, an organization whose focus is to pioneer approaches to scientific discovery in order to develop a cure for NGLY1 deficiency. One researcher that Matt brought on board was Carolyn Bertozzi, Ph.D., a chemist from Stanford University. A graduate student in her laboratory, Ian Blong, Ph.D., decided to study NGLY1 and was able to complete his dissertation while working on this topic at Stanford University.
Ian’s journey towards obtaining his Ph.D. started after being accepted into the San Francisco State University (SFSU) CIRM Bridges to Stem Cell Research Master’s Program. CIRM funding for this program allowed students like Ian to take courses at SFSU while also working in labs at world renown institutions in the Bay Area such as UCSF, Stanford, and UC Berkeley.
Carolyn Bertozzi, Ph.D. Image Credit: L.A. Cicero
In exploring the various options afforded to him by the CIRM, Ian found Dr. Bertozzi’s lab at UC Berkeley, where he focused on early stage discovery research. His master’s thesis project focused on how to generate rare neuronal and and neural crest cells from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs). Both of these stem cell types can generate virtually any kind of cell, but iPSCs are unique in that they can be generated from the adult cells (such as skin) of a patient.
Ian decided to continue his studies in Dr. Bertozzi’s lab by continuing his research in a Ph.D. program at UC Berkeley. He credits the SFSU CIRM Bridges Program with giving him the opportunity to work under a prestigious PI and in her lab at UC Berkeley, which allowed him to continue his studies there.
“The CIRM Bridges Program gave me the confidence and resources to pursue my dreams. Being able to have the capability of going to Berkeley and do research with top tier scientists along with the support from CIRM. Without CIRM, I wouldn’t have had the courage to go to those universities to get my foot in the door.”
Eventually, Dr. Bertozzi move her operations to Stanford University and Ian continued his Ph.D. studies there. Stanford provided him the opportunity to focus more on the translational stage, which is an area of research aimed at developing a therapeutic candidate. Going into his Ph.D. work, Ian was able to build upon his previous “discovery stage” knowledge of generating neuronal and neural crest cells from iPSCS and hESCs.
An area of his work at Stanford focused on generating neural crest cells from iPSCs of those with NGLY1 deficiency. The goal was to identify a phenotype, which is an observable characteristic such as physical form. Identifying this would help better understand potential differentiation pathways that underlie NGLY1 deficiency, which could lead to the development a potential treatment for the condition.
Flash forward to present day and Ian is still using the knowledge he learned from his time in the SFSU CIRM Bridges to Stem Cell Research Program. He is currently a scientist at the healthcare company Roche, where his focus is on manufacturing future diagnostics and therapeutics on a much larger scale, a complex and extremely critical process necessary in widely distributing potential stem cell-based treatments.
Ian’s experience and opportunities provided to him is just one of the many examples of how the various CIRM Bridges Programs across California have given students the resources needed to become the next generation of scientists.
In addition to approving funding for breast cancer related brain metastases last week, the CIRM Board also approved an additional $19.7 million geared towards our translational research program. The goal of this program is to help promising projects complete the testing needed to begin talking to the US Food and Drug Administration (FDA) about holding a clinical trial.
Before getting into the details of each project, here is a table with a brief synopsis of the awards:
TRAN1 – 11532
Illustration of a healthy eye vs eye with AMD
$3.73 million was awarded to Dr. Mark Humayun at USC to develop a novel therapeutic product capable of slowing the progression of age-related macular degeneration (AMD).
AMD is an eye disease that causes severe vision impairment, resulting in the inability to read, drive, recognize faces, and blindness if left untreated. It is the leading cause of vision loss in the U.S. and currently affects over 2 million Americans. By the year 2050, it is projected that the number of affected individuals will more than double to over 5 million. A layer of cells in the back of the eye called the retinal pigment epithelium (RPE) provide support to photoreceptors (PRs), specialized cells that play an important role in our ability to process images. The dysfunction and/or loss of RPE cells plays a critical role in the loss of PRs and hence the vision problems observed in AMD. One form of AMD is known as dry AMD (dAMD) and accounts for about 90% of all AMD cases.
The approach that Dr. Humayun is developing will use a biologic product produced by human embryonic stem cells (hESCs). This material will be injected into the eye of patients with early development of dAMD, supporting the survival of photoreceptors in the affected retina.
TRAN1 – 11579
Illustration depicting the role neuronal relays play in muscle sensation
$6.23 million was awarded to Dr. Mark Tuszynski at UCSD to develop a neural stem cell therapy for spinal cord injury (SCI).
According to data from the National Spinal
Cord Injury Statistical Center, as of 2018, SCI affects an estimated 288,000
people in the United States alone, with about 17,700 new cases each year. There
are currently no effective therapies for SCI. Many people suffer SCI in early
adulthood, leading to life-long disability and suffering, extensive treatment
needs and extremely high lifetime costs of health care.
The approach that Dr. Tuszynski is developing will use hESCs to create neural stem cells (NSCs). These newly created NSCs would then be grafted at the site of injury of those with SCI. In preclinical studies, the NSCs have been shown to support the formation of neuronal relays at the site of SCI. The neuronal relays allow the sensory neurons in the brain to communicate with the motor neurons in the spinal cord to re-establish muscle control and movement.
TRAN1 – 11548
Graphic depicting the challenges of traumatic brain injury (TBI)
$4.83 million was awarded to Dr. Brian Cummings at UC Irvine to develop a neural stem cell therapy for traumatic brain injury (TBI).
TBI is caused by a bump, blow, or jolt to the head that disrupts the normal function of the brain, resulting in emotional, mental, movement, and memory problems. There are 1.7 million people in the United States experiencing a TBI that leads to hospitalization each year. Since there are no effective treatments, TBI is one of the most critical unmet medical needs based on the total number of those affected and on a cost basis.
The approach that Dr. Cummings is developing will also use hESCs to create NSCs. These newly created NSCs would be integrated with injured tissue in patients and have the ability to turn into the three main cell types in the brain; neurons, astrocytes, and oligodendrocytes. This would allow for TBI patients to potentially see improvements in issues related to memory, movement, and anxiety, increasing independence and lessening patient care needs.
TRAN1 – 11628
Illustration depicting the brain damage that occurs under hypoxic-ischemic conditions
$4.96 million was awarded to Dr. Evan Snyder at Sanford Burnham Prebys to develop a neural stem cell therapy for perinatal hypoxic-ischemic brain injury (HII).
HII occurs when there is a lack of oxygen flow to the brain. A newborn infant’s body can compensate for brief periods of depleted oxygen, but if this lasts too long, brain tissue is destroyed, which can cause many issues such as developmental delay and motor impairment. Current treatment for this condition is whole-body hypothermia (HT), which consists of significantly reducing body temperature to interrupt brain injury. However, this is not very effective in severe cases of HII.
The approach that Dr. Snyder is developing will use an established neural stem cell (NSC) line. These NSCs would be injected and potentially used alongside HT treatment to increase protection from brain injury.
A transplant can be a lifesaving procedure for many people across the United States. In fact, according to the Health Resources & Services Administration, 36,528 transplants were performed in 2018. However, as of January 2019, the number of men, women, and children on the national transplant waiting list is over 113,000, with 20 people dying each day waiting for a transplant and a new person being added to the list every 10 minutes.
Before considering a transplant, there needs to be an immunological match between the donated tissue and/or blood stem cells and the recipient. To put it simply, a “match” indicates that the donor’s cells will not be marked by the recipient’s immune cells as foreign and begin to attack it, a process known as graft-versus-host disease. Unfortunately, these matches can be challenging to find, particularly for some ethnic minorities. Often times, immunosuppression drugs are also needed in order to prevent the foreign cells from being attacked by the body’s immune system. Additionally, chemotherapy and radiation are often needed as well.
Fortunately, a CIRM-funded study at Stanford has shown some promising results towards addressing the issue of matching donor cells and recipient. Dr. Irv Weissman and his colleagues at Stanford have found a way to prepare mice for a transplant of blood stem cells, even when donor and recipient are an immunological mismatch. Their method involved using a combination of six specific antibodies and does not require ongoing immunosuppression.
The combination of antibodies did this by eliminating several types of immune cells in the animals’ bone marrow, which allowed blood stem cells to engraft and begin producing blood and immune cells without the need for continued immunosuppression. The blood stem cells used were haploidentical, which, to put it simply, is what naturally occurs between parent and child, or between about half of all siblings.
Additional experiments also showed that the mice treated with the six antibodies could also accept completely mismatched purified blood stem cells, such as those that might be obtained from an embryonic stem cell line.
The results established in this mouse model could one day lay the foundation necessary to utilize this approach in humans after conducting clinical trials. The idea would be that a patient that needs a transplanted organ could first undergo a safe, gentle transplant with blood stem cells derived in the laboratory from embryonic stem cells. The same embryonic stem cells could also then be used to generate an organ that would be fully accepted by the recipient without requiring the need for long-term treatment with drugs to suppress the immune system.
In a news release, Dr. Weissman is quoted as saying,
“With support by the California Institute for Regenerative Medicine, we’ve been able to make important advances in human embryonic stem cell research. In the past, these stem cell transplants have required a complete match to avoid rejection and reduce the chance of graft-versus-host disease. But in a family with four siblings the odds of having a sibling who matches the patient this closely are only one in four. Now we’ve shown in mice that a ‘half match,’ which occurs between parents and children or in two of every four siblings, works without the need for radiation, chemotherapy or ongoing immunosuppression. This may open up the possibility of transplant for nearly everyone who needs it. Additionally, the immune tolerance we’re able to induce should in the future allow the co-transplantation of [blood] stem cells and tissues, such as insulin-producing cells or even organs generated from the same embryonic stem cell line.”
The full results to this study were published in Cell Stem Cell.