A model for success

Dr. Maria Millan, CIRM’s President & CEO

Funding models are rarely talked about in excited tones.  It’s normally relegated to the dry tomes of academia. But in CIRM’s case, the funding model we have created is not just fundamental to our success in advancing regenerative medicine in California, it’s also proving to be a model that many other agencies are looking at to see if they can replicate it.

A recent article in the journal Cell & Gene Therapy Insights looks at what the CIRM model does and how it has achieved something rather extraordinary.

Full disclosure. I might be a tad biased here as the article was written by my boss, Dr. Maria Millan, and two of my colleagues, Dr. Sohel Talib and Dr. Shyam Patel.

I won’t go into huge detail here (you can get that by reading the article itself) But the article “highlights 3 elements of CIRM’s funding model that have enabled California academic researchers and companies to de-risk development of novel regenerative medicine therapies and attract biopharma industry support.”

Those three elements are:

1. Ensuring that funding mechanisms bridge the entire translational “Valley of Death”

2. Constantly optimizing funding models to meet the needs of a rapidly evolving industry

3. Championing the portfolio and proactively engaging potential industry partners

As an example of the first, they point to our Disease Team awards. These were four-year investments that gave researchers with promising projects the time, support and funds they needed to not only develop a therapy, but also move it out of academia into a company and into patients.  Many of these projects had struggled to get outside investment until CIRM stepped forward. One example they offer is this one.

“CIRM Disease Team award funding also enabled Dr. Irving Weissman and the Stanford University team to discover, develop and obtain first-in-human clinical data for the innovative anti-CD47 antibody immunotherapy approach to cancer. The spin-out, Forty Seven, Inc., then leveraged CIRM funding as well as venture and public market financing to progress clinical development of the lead candidate until its acquisition by Gilead Sciences in April 2020 for $4.9B.”

But as the field evolved it became clear CIRM’s funding model had to evolve too, to better meet the needs of a rapidly advancing industry. So, in 2015 we changed the way we worked. For example, with clinical trial stage projects we reduced the average time from application to funding from 22 months to 120 days. In addition to that applications for new clinical stage projects were able to be submitted year-round instead of only once or twice a year as in the past.

We also created hard and fast milestones for all programs to reach. If they met their milestone funding continued. If they didn’t, funding stopped. And we required clinical trial stage projects, and those for earlier stage for-profit companies, to put up money of their own. We wanted to ensure they had “skin in the game” and were as committed to the success of their project as we were.

Finally, to champion the portfolio we created our Industry Alliance Program. It’s a kind of dating program for the researchers CIRM funds and companies looking to invest in promising projects. Industry partners get a chance to look at our portfolio and pick out projects they think are interesting. We then make the introductions and see if we can make a match.

And we have.

“To date, the IAP has also formally enrolled 8 partners with demonstrated commitment to cell and gene therapy development. The enrolled IAP partners represent companies both small and large, multi-national venture firms and innovative accelerators.

Over the past 18 months, the IAP program has enabled over 50 one-on-one partnership interactions across CIRM’s portfolio from discovery stage pluripotent stem cell therapies to clinical stage engineered HSC therapies.”

As the field continues to mature there are new problems emerging, such as the need to create greater manufacturing capacity to meet the growth in demand for high quality stem cell products. CIRM, like all other agencies, will also have to evolve and adapt to these new demands. But we feel with the model we have created, and the flexibility we have to pivot when needed, we are perfectly situated to do just that.

CIRM-funded treatment for cancer granted FDA breakthrough therapy designation

Mark Chao, M.D., Ph.D., cofounder of Forty Seven, Inc. and current VP of oncology clinical research at Gilead Sciences

An antibody therapeutic, magrolimab, being tested for myelodysplastic syndrome (MDS), a group of cancers in which the bone marrow does not produce enough healthy blood cells , was granted breakthrough therapy designation with the Food and Drug Administration (FDA). 

Breakthrough therapy designations from the FDA are intended to help expedite the development of new treatments. They require preliminary clinical evidence that demonstrates that the treatment may have substantial improvement in comparison to therapy options currently available. CIRM funded a Phase 1b trial in MDS and acute myeloid leukemia (AML), another type of blood cancer, that provided the data on which the breakthrough therapy designation is based.

Cancer cells express a signal known as CD47, which sends a “don’t eat me” message to macrophages, white blood cells that are part of the immune system designed to “eat” and destroy unhealthy cells. Magrolimab works by blocking the signal, enabling the body’s own immune system to detect and destroy the cancer cells.

Magrolimab was initially developed by a team led by Irv Weissman, M.D. at Stanford University with the support of CIRM awards. This led to the formation of Forty Seven, Inc., which was subsequently acquired by Gilead Sciences in April 2020 for $4.9 billion (learn more about other highlighted partnership events on CIRM’s Industry Alliance Program website by clicking here).

In CIRM’s 2019-2020 18-Month Report, Mark Chao, M.D., Ph.D.,  who co-founded Forty Seven, Inc. and currently serves as the VP of oncology clinical research at Gilead Sciences, credits CIRM with helping progress this treatment.

“CIRM’s support has been instrumental to our ability to rapidly progress Forty Seven’s CD47 antibody targeting approach.”

Magrolimab is currently being studied as a combination therapy with azacitidine, a chemotherapy drug, in a Phase 3 clinical trial in previously untreated higher risk MDS. This is one of the last steps before seeking FDA approval for widespread commercial use.

Merdad Parsey, MD, PhD, Chief Medical Officer at Gilead Sciences

In a press release, Merdad Parsey, M.D., Ph.D., Chief Medical Officer at Gilead Sciences discusses the significance of the designation from the FDA and the importance of the treatment.

“The Breakthrough Therapy designation recognizes the potential for magrolimab to help address a significant unmet medical need for people with MDS and underscores the transformative potential of Gilead’s immuno-oncology therapies in development.”

Newly discovered “don’t eat me” signal shows potential for ovarian and triple-negative breast cancer treatment

Stanford researchers have found that cancer cells have a protein called CD24 on their surface that enables them to protect themselves against the body’s immune cells.
Courtesy of Shutterstock

Getting a breast cancer diagnosis is devastating news in and of itself. Currently, there are treatment options that target three different types of receptors, which are named hormone epidermal growth factor receptor 2 (HER-2), estrogen receptors (ER), and progesterone receptors (PR), commonly found in breast cancer cells, . Unfortunately, in triple-negative breast cancer, which occurs in 10-20% of breast cancer cases, all three receptors are absent, making this form of breast cancer very aggressive and difficult to treat.

In recent years, researchers have discovered that proteins on the cell surface can tell macrophages, an immune cell designed to detect and engulf foreign or abnormal cells, not to eat and destroy them. This can be useful to help normal cells keep the immune system from attacking them, but cancer cells can also use these “don’t eat me” signals to hide from the immune system. 

An illustration of a macrophage, a vital part of the immune system, engulfing and destroying a cancer cell. Antibody 5F9 blocks a “don’t eat me” signal emitted from cancer cells. Courtesy of Forty Seven, Inc.

In fact, because of this concept, a CIRM-funded clinical trial is being conducted that uses an antibody called 5F9 to block a “don’t eat me” signal known as CD47 that is found in cancer cells. The results of this trial, which have been announced in a previous blog post, are very promising.

Further building on this concept, a CIRM-funded study has now discovered a potential new target for triple-negative breast cancer as well as ovarian cancer. Dr. Irv Weissman and a team of researchers at Stanford University have discovered an additional “don’t eat me” signal called CD24 that cancers seem to use to evade detection and destruction by the immune system.

In a press release, Dr. Weissman talks about his work with CD47 and states that,

“Finding that not all patients responded to anti-CD47 antibodies helped fuel our research at Stanford to test whether non-responder cells and patients might have alternative ‘don’t eat me’ signals.” 

The scientists began by looking for signals that were produced more highly in cancers than in the tissues from which the cancers arose. It is here that they discovered CD24 and then proceeded to implant human breast cancer cells in mice for testing. When the CD24 signaling was blocked, the mice’s immune system attacked the cancer cells.

An important discovery was that ovarian and triple-negative breast cancer were highly affected by blocking of CD24 signaling. The other interesting discovery was that the effectiveness of CD24 blockage seems to be complementary to CD47 blockage. In other words, some cancers, like blood cancers, seem to be highly susceptible to blocking CD47, but not to CD24 blockage. For other cancers, like ovarian cancer, the opposite is true. This could suggest that most cancers will be susceptible to the immune system by blocking the CD24 or CD47 signal, and that cancers may be even more vulnerable when more than one “don’t eat me” signal is blocked.

Dr. Weissman and his team are now hopeful that potential therapies to block CD24 signaling will follow in the footsteps of the clinical trials related to CD47.

The full results to the study were published in Nature.

Stanford study successful in transplant of mismatched stem cells, tissue in mice

Dr. Irv Weissman at Stanford University

A transplant can be a lifesaving procedure for many people across the United States. In fact, according to the Health Resources & Services Administration, 36,528 transplants were performed in 2018. However, as of January 2019, the number of men, women, and children on the national transplant waiting list is over 113,000, with 20 people dying each day waiting for a transplant and a new person being added to the list every 10 minutes.

Before considering a transplant, there needs to be an immunological match between the donated tissue and/or blood stem cells and the recipient. To put it simply, a “match” indicates that the donor’s cells will not be marked by the recipient’s immune cells as foreign and begin to attack it, a process known as graft-versus-host disease. Unfortunately, these matches can be challenging to find, particularly for some ethnic minorities. Often times, immunosuppression drugs are also needed in order to prevent the foreign cells from being attacked by the body’s immune system. Additionally, chemotherapy and radiation are often needed as well.

Fortunately, a CIRM-funded study at Stanford has shown some promising results towards addressing the issue of matching donor cells and recipient. Dr. Irv Weissman and his colleagues at Stanford have found a way to prepare mice for a transplant of blood stem cells, even when donor and recipient are an immunological mismatch. Their method involved using a combination of six specific antibodies and does not require ongoing immunosuppression.

The combination of antibodies did this by eliminating several types of immune cells in the animals’ bone marrow, which allowed blood stem cells to engraft and begin producing blood and immune cells without the need for continued immunosuppression. The blood stem cells used were haploidentical, which, to put it simply, is what naturally occurs between parent and child, or between about half of all siblings. 

Additional experiments also showed that the mice treated with the six antibodies could also accept completely mismatched purified blood stem cells, such as those that might be obtained from an embryonic stem cell line. 

The results established in this mouse model could one day lay the foundation necessary to utilize this approach in humans after conducting clinical trials. The idea would be that a patient that needs a transplanted organ could first undergo a safe, gentle transplant with blood stem cells derived in the laboratory from embryonic stem cells. The same embryonic stem cells could also then be used to generate an organ that would be fully accepted by the recipient without requiring the need for long-term treatment with drugs to suppress the immune system. 

In a news release, Dr. Weissman is quoted as saying,

“With support by the California Institute for Regenerative Medicine, we’ve been able to make important advances in human embryonic stem cell research. In the past, these stem cell transplants have required a complete match to avoid rejection and reduce the chance of graft-versus-host disease. But in a family with four siblings the odds of having a sibling who matches the patient this closely are only one in four. Now we’ve shown in mice that a ‘half match,’ which occurs between parents and children or in two of every four siblings, works without the need for radiation, chemotherapy or ongoing immunosuppression. This may open up the possibility of transplant for nearly everyone who needs it. Additionally, the immune tolerance we’re able to induce should in the future allow the co-transplantation of [blood] stem cells and tissues, such as insulin-producing cells or even organs generated from the same embryonic stem cell line.”

The full results to this study were published in Cell Stem Cell.