Women who have changed, and are changing, the world

The problem with trying to write about something like Women’s History Month is where do you start? Even if you narrow it down to women in science the list is vast.

Marie Curie

I suppose you could always start with Maria Salomea Skłodowska who is better known as Marie Curie. She not only discovered radium and polonium, but she was also the first woman to win a Nobel Prize (in Physics). When she later won another Nobel (in Chemistry) she became the first person ever to win two Nobels and is still the only person ever to win in two different fields. Not a bad place to start.

Agnes Pockels

Or how about Agnes Pockels (1862–1935). Even as a child Agnes was fascinated by science but, in Germany at the time, women were not allowed to attend university. So, she depended on her younger brother to send her his physics textbooks when he was finished with them. Agnes studied at home while taking care of her elderly parents. Doing the dishes  Agnes noticed how oils and soaps could impact the surface tension of water. So, she invented a method of measuring that surface tension. She wrote a paper about her findings that was published in Nature, and went on to become a highly respected and honored pioneer in the field.

Jennifer Doudna (left) and Emmanuelle Charpentier: Photo courtesy Nature

Fast forward to today we could certainly do worse than profile the two women who won the 2020 Nobel Prize in Chemistry for their work with the gene-editing tool CRISPR-Cas9; Jennifer Doudna at the University of California, Berkeley, and Emmanuelle Charpentier at the Max Planck Unit for the Science of Pathogens in Berlin. Their pioneering work showed how you could use CRISPR  to make precise edits in genes, creating the possibility of using it to edit human genes to eliminate or cure diseases. In fact, some CIRM-funded research is already using this approach to try and cure sickle cell disease.

In awarding the Nobel to Charpentier and Doudna, Pernilla Wittung Stafshede, a biophysical chemist and member of the Nobel chemistry committee, said: “The ability to cut DNA where you want has revolutionized the life sciences. The ‘genetic scissors’ were discovered just eight years ago but have already benefited humankind greatly.”

Barbara McClintock: Photo courtesy Brittanica

Appropriately enough none of that work would have been possible without the pioneering work of another woman, Barbara McClintock. She dedicated her career to studying the genetics of corn and developed a technique that enabled her to identify individual chromosomes in different strains of corn.

At the time it was thought that genes were stable and were arranged in a linear fashion on chromosomes, like beads on a string. McClintock’s work showed that genes could be mobile, changing position and altering the work of other genes. It took a long time before the scientific world caught up with her and realized she was right. But in 1983 she was awarded the Nobel Prize in Medicine for her work.

Katherine Johnson at her desk at Langley Research Center: Photo courtesy NASA /AFP

Katherine Johnson is another brilliant mind whose recognition came later in life. But when it did, it made her a movie star. Kind of. Johnson was a mathematician, a “computer” in the parlance of the time. She did calculations by hand, enabling NASA to safely launch and recover astronauts in the early years of the space race.

Johnson and the other Black “computers” were segregated from their white colleagues until the last 1950’s, when signs dictating which restrooms and drinking fountains they could use were removed. She was so highly regarded that when John Glenn was preparing for the flight that would make him the first American to orbit the earth he asked for her to manually check the calculations a computer had made. He trusted her far more than any machine.

Johnson and her co-workers were overlooked until the 2016 movie “Hidden Figures” brought their story to life. She was also awarded the Presidential Medal of Freedom, America’s highest civilian honor, by President Obama.

There are so many extraordinary women scientists we could talk about who have made history. But we should also remind ourselves that we are surrounded by remarkable women right now, women who are making history in their own way, even if we don’t recognized it at the moment. Researchers that CIRM funds, Dr. Catriona Jamieson at UC San Diego, Dr. Jan Nolta at UC Davis, Dr. Jane Lebkowski with Regenerative Patch technologies and so many others. They’re all helping to change the world. We just don’t know it yet.

If you would like to learn about other women who have made extraordinary contributions to science you can read about them here and here and here.

De-stressing stem cells and the Bonnie & Clyde of stem cells

Dr. John Cashman

The cells in our body are constantly signalling with each other, it’s a critical process by which cells communicate not just with other cells but also with elements within themselves. One of the most important signalling pathways is called Wnt. This plays a key role in early embryonic and later development. But when Wnt signalling goes wrong, it can also help spur the growth of cancer.

Researchers at the Human BioMolecular Research Institute (HBRI) and Stanford University, have reported on a compound that can trigger a cascade of events that create stress and ultimately impact Wnt’s ability to control the ability of cells to repair themselves.

In a news release Dr. Mark Mercola, a co-author of a CIRM-funded study – published in the journal Cell Chemical Biology – says this is important: “because it explains why stressed cells cannot regenerate and heal tissue damage. By blocking the ability to respond to Wnt signaling, cellular stress prevents cells from migrating, replicating and differentiating.”

The researchers discovered a compound PAWI-2 that shows promise in blocking the compound that causes this cascade of problems. Co-author Dr. John Cashman says PAWI-2 could lead to treatments in a wide variety of cancers such as pancreatic, breast, prostate and colon cancer.

“As anti-cancer PAWI-2 drug development progresses, we expect PAWI-2 to be less toxic than current therapeutics for pancreatic cancer, and patients will benefit from improved safety, less side effects and possibly with significant cost-savings.”

Dr. Catriona Jamieson: Photo courtesy Moores Cancer Center, UCSD

Speaking of cancer….

Stem cells have many admirable qualities. However, one of their less admirable ones is their ability to occasionally turn into cancer stem cells. Like regular stem cells these have the ability to renew and replicate themselves over time, but as cancer stem cells they use that ability to help fuel the growth and spread of cancer in the body. Now, researchers at U.C. San Diego are trying to better understand how those regular stem cells become cancer stem cells, so they can stop that process.

In a CIRM-funded study Dr. Catriona Jamieson and her team identified two molecules, APOBEC3C and ADAR1, that play a key role in this process.

In a news release Jamieson said: “APOBEC3C and ADAR1 are like the Bonnie and Clyde of pre-cancer stem cells — they drive the cells into malignancy.”

So they studied blood samples from 54 patients with leukemia and 24 without. They found that in response to inflammation, APOBEC3C promotes the rapid production of pre-leukemia stem cells. That in turn enables ADAR1 to go to work, interfering with gene expression in a way that helps those pre-leukemia stem cells turn into leukemia stem cells.

They also found when they blocked the action of ADAR1 or silenced the gene in patient cells in the laboratory, they were able to stop the formation of leukemia stem cells.

The study is published in the journal Cell Reports.

How stem cells are helping her win the fight of her life

We have all read about people who smoke a pack of cigarettes and drink a bottle of whiskey a day and somehow manage to live a long, healthy life. Then there are people like Sandra Dillon. She lived as healthy a life as you can imagine; she exercised a lot, ate a healthy diet and didn’t smoke. Yet at the age of 28 she was diagnosed with a rare and deadly form of blood cancer called myelofibrosis.

Sandra underwent the traditional forms of treatment but those proved ineffective and time seemed to be running out. Then she heard about a clinical trial for a new, experimental stem cell therapy, with Dr. Catriona Jamieson at the University of California San Diego.

Sandra says she wasn’t looking forward to it, but she was in a lot of pain, was getting much sicker and none of the treatments she tried was working.

“At the time I was actually quite afraid of seeing doctors or going to medical institutions. My experience had been rough, and I knew that I had to overcome my fear of going to hospitals and being treated. But it was a chance to have hope and to be on something that might work when there was nothing else available.”

Dr. Jamieson’s approach (CIRM helped support her early work in this area) had led to her identifying how abnormal gene activity was responsible for the progression of this form of blood cancer. With that knowledge she then identified a specific small molecule known to inhibit this mutant gene activity, and how it could halt the disease.

That’s what happened with Sandra. She says after years of pain and exhaustion, of fearing that she was running out of time, the treatment produced impressive results.

“It was pretty amazing. I had really low expectations from how sick I was and that this was experimental, and it was cancer and you expect it to be awful. And my experience was the opposite of what I’d expected. I started to feel incredible. The pain, after a few months, the side effects from my cancer started to come down.”

Today Sandra’s cancer is still in remission. She is back to her old, healthy, energetic self. She says she doesn’t consider herself a stem cell pioneer but is glad her participation in the trial might also benefit others.

“It’s helped me but the opportunity that it could also help other people is truly meaningful.”

The treatment she received was approved by the US Food and Drug Administration in 2019, the first approval for a therapy that had CIRM support.

I recently had the great pleasure of interviewing Sandra as part of our CIRM 2020 Grantee Meeting.

Charting a new course for stem cell research

What are the latest advances in stem cell research targeting cancer? Can stem cells help people battling COVID-19 or even help develop a vaccine to stop the virus? What are researchers and the scientific community doing to help address the unmet medical needs of underserved communities? Those are just a few of the topics being discussed at the Annual CIRM Alpha Stem Cell Clinic Network Symposium on Thursday, October 8th from 9am to 1.30pm PDT.

Like pretty nearly everything these days the symposium is going to be a virtual event, so you can watch it from the comfort of your own home on a phone or laptop. And it’s free.

The CIRM Alpha Clinics are a network of leading medical centers here in California. They specialize in delivering stem cell and gene therapies to patients. So, while many conferences look at the promise of stem cell therapies, here we deal with the reality; what’s in the clinic, what’s working, what do we need to do to help get these therapies to patients in need?

It’s a relatively short meeting, with short presentations, but that doesn’t mean it will be short on content. Some of the best stem cell researchers in the U.S. are taking part so you’ll learn an awful lot in a short time.

We’ll hear what’s being done to find therapies for

  • Rare diseases that affect children
  • Type 1 diabetes
  • HIV/AIDS
  • Glioblastoma
  • Multiple myeloma

We’ll discuss how to create a patient navigation system that can address social and economic determinants that impact patient participation? And we’ll look at ways that the Alpha Clinic Network can partner with community care givers around California to increase patient access to the latest therapies.

It’s going to be a fascinating day. And did I mention it’s free!

All you have to do is go to this Eventbrite page to register.

And feel free to share this with your family, friends or anyone you think might be interested.

We look forward to seeing you there.

Perseverance: from theory to therapy. Our story over the last year – and a half

Some of the stars of our Annual Report

It’s been a long time coming. Eighteen months to be precise. Which is a peculiarly long time for an Annual Report. The world is certainly a very different place today than when we started, and yet our core mission hasn’t changed at all, except to spring into action to make our own contribution to fighting the coronavirus.

This latest CIRM Annual Reportcovers 2019 through June 30, 2020. Why? Well, as you probably know we are running out of money and could be funding our last new awards by the end of this year. So, we wanted to produce as complete a picture of our achievements as we could – keeping in mind that we might not be around to produce a report next year.

Dr. Catriona Jamieson, UC San Diego physician and researcher

It’s a pretty jam-packed report. It covers everything from the 14 new clinical trials we have funded this year, including three specifically focused on COVID-19. It looks at the extraordinary researchers that we fund and the progress they have made, and the billions of additional dollars our funding has helped leverage for California. But at the heart of it, and at the heart of everything we do, are the patients. They’re the reason we are here. They are the reason we do what we do.

Byron Jenkins, former Naval fighter pilot who battled back from his own fight with multiple myeloma

There are stories of people like Byron Jenkins who almost died from multiple myeloma but is now back leading a full, active life with his family thanks to a CIRM-funded therapy with Poseida. There is Jordan Janz, a young man who once depended on taking 56 pills a day to keep his rare disease, cystinosis, under control but is now hoping a stem cell therapy developed by Dr. Stephanie Cherqui and her team at UC San Diego will make that something of the past.

Jordan Janz and Dr. Stephanie Cherqui

These individuals are remarkable on so many levels, not the least because they were willing to be among the first people ever to try these therapies. They are pioneers in every sense of the word.

Sneha Santosh, former CIRM Bridges student and now a researcher with Novo Nordisk

There is a lot of information in the report, charting the work we have done over the last 18 months. But it’s also a celebration of everyone who made it possible, and our way of saying thank you to the people of California who gave us this incredible honor and opportunity to do this work.

We hope you enjoy it.

How early CIRM support helped an anti-cancer therapy overcome obstacles and help patients

Dr. Catriona Jamieson, UC San Diego

When you read about a new drug or therapy being approved to help patients it always seems so simple. Researchers come up with a brilliant idea, test it to make sure it is safe and works, and then get approval from the US Food and Drug Administration (FDA) to sell it to people who need it.

But it’s not always that simple, or straight forward. Sometimes it can take years, with several detours along the way, before the therapy finds its way to patients.

That’s the case with a blood cancer drug called fedratinib (we blogged about it here) and the relentless efforts by U.C. San Diego researcher Dr. Catriona Jamieson to help make it available to patients. CIRM funded the critical early stage research to help show this approach could help save lives. But it took many more years, and several setbacks, before Dr. Jamieson finally succeeded in getting approval from the FDA.

The story behind that therapy, and Dr. Jamieson’s fight, is told in the San Diego Union Tribune. Reporter Brad Fikes has been following the therapy for years and in the story he explains why he found it so fascinating, and why this was a therapy that almost didn’t make it.

The Past, the Present, and the Uncertain Future of Stem Cell Research

Ronnie, a boy who was born without a functioning immune system but who is thriving today because of CIRM funded research

When CIRM was created in 2004 the field of stem cell research was still very much in its infancy. Fast forward 15 years and it’s moving ahead at a rapid pace, probably faster than most scientists would have predicted. How fast? Find out for yourself at a free public event at UC San Diego on May 28th from 12.30 to 1.30p.

In the last 15 years CIRM has funded 53 clinical trials in everything from heart disease and stroke, to spinal cord injury, vision loss, sickle cell disease and HIV/AIDS.

UCSD was one of the first medical centers chosen to host a CIRM Alpha Stem Cell Clinic – a specialist center with the experience and expertise to deliver stem cell therapies to patients – and to date is running more than a dozen clinical trials for breast cancer, heart failure, leukemia and chronic lower back pain.

Clearly progress is being made. But the field is also facing some challenges. Funding at the federal level for stem cell research is under threat, and CIRM is entering what could be its final phase. We have enough money left to fund new projects through this year (and these are multi-year projects so they will run into 2021 or 2022) but unless there is a new round of funding we will slowly disappear. And with us, may also disappear the hopes of some of the most promising projects underway.

If CIRM goes, then projects that we have supported and nurtured through different phases of research may struggle to make it into a clinical trial because they can’t get the necessary funding.

Clearly this is a pivotal time in the field.

We will discuss all this, the past, the present and the uncertain future of stem cell research at the meeting at UC San Diego on May 28th. The doors will open at noon for registration (snacks and light refreshments will also be available) and the program runs from 12.30p to 1.30p.

The speakers are:

  • Dr. Catriona Jamieson, Director of the UC San Diego Health CIRM Alpha Stem Cell Clinic and Sanford Stem Cell Clinical Center.
  • Dr. Maria Millan, President and CEO of CIRM
  • Dr. David Higgins, CIRM Board member and Patient Advocate for Parkinson’s Disease.

And of course, we want to hear from you, so we’ll leave plenty of time for questions.

Free parking is available.

Go here for more information about the event and how you can register

Free free to share this with anyone you think might be interested in joining us and we look forward to seeing you there.

Partnering with Big Pharma to benefit patients

Our mission at CIRM is to accelerate the development of stem cell therapies for patients with unmet medical needs. One way we have been doing that is funding promising research to help it get through what’s called the “Valley of Death.” This is the time between a product or project showing promise and the time it shows that it actually works.

Many times the big pharmaceutical companies or deep pocketed investors, whose support is needed to cover the cost of clinical trials, don’t want to get involved until they see solid proof that this approach works. However, without that support the researchers can’t do the early stage clinical trials to get that proof.

The stem cell agency has been helping get these projects through this Catch 22 of medical research, giving them the support they need to get through the Valley of Death and emerge on the other side where Big Pharma is waiting, ready to take them from there.

We saw more evidence that Big Pharma is increasingly happy doing that this week with the news that the University of California, San Diego, is teaming up with GSK to develop a new approach to treating blood cancers.

Dr. Catriona Jamieson: Photo courtesy Moores Cancer Center, UCSD

Dr. Catriona Jamieson:
Photo courtesy Moores Cancer Center, UCSD

Dr. Catriona Jamieson is leading the UCSD team through her research that aims at killing the cancer stem cells that help tumors survive chemotherapy and other therapies, and then spread throughout the body again. This is work that we have helped fund.

In a story in The San Diego Union Tribune, reporter Brad Fikes says this is a big step forward:

“London-based GSK’s involvement marks a maturation of this aspect of Jamieson’s research from basic science to the early stages of discovering a drug candidate. Accelerating such research is a core purpose of CIRM, founded in 2004 to advance stem cell technology into disease therapies and diagnostics.”

The stem cell agency’s President and CEO, Dr. C. Randal Mills, is also quoted in the piece saying:

“This is great news for Dr. Jamieson and UCSD, but most importantly it is great news for patients. Academic-industry partnerships such as this bring to bear the considerable resources necessary to meaningfully confront healthcare’s biggest challenges. We have been strong supporters of Dr. Jamieson’s work for many years and I think this partnership not only reflects the progress that she has made, but just as importantly it reflects how the field as a whole has progressed.”

As the piece points out, academic researchers are very good at the science but are not always as good at turning the results of the research into a marketable product. That’s where having an industry partner helps. The companies have the experience turning promising therapies into approved treatments.

As Scott Lippman, director of the Moores Cancer Center at UCSD, said of the partnership:

“This is a wonderful example of academia-industry collaboration to accelerate drug development and clinical impact… and opens the door for cancer stem cell targeting from a completely new angle.”

With the cost of carrying out medical research and clinical trials rising it’s hard for scientists with limited funding to go it alone. That’s why these partnerships, with CIRM and industry, are so important. Working together we make it possible to speed up the development and testing of therapies, and get them to patients as quickly as possible.