Why diversity in clinical trials is essential

The California Institute for Regenerative Medicine (CIRM) is proud to join fellow advocates of clinical trial diversity in applauding a new law that will allow the U.S. Food & Drug Administration (FDA) to require diverse representation in clinical trials. 

A clinical trial, as defined by the FDA, tests potential treatments in human volunteers to see whether they should be approved for wider use in the general population. CIRM has invested in 88 clinical trials to date.

In December 2022, Congress approved a bill that requires diversity action plans for clinical trials used by the FDA. This new law builds on draft guidance issued by the FDA in April 2022 and will move the draft forward to finalization and enforcement.  

The law follows a 2022 report issued by the National Academies of Sciences, Engineering and Medicine that starkly notes:  

“While progress has been made with representation of white women in clinical trials and clinical research, there has been little progress in the last three decades to increase participation of racial and ethnic minority population groups. This underrepresentation is compounding health disparities, with serious consequences for underrepresented groups and for the nation.”  

New Requirements for Clinical Trials

Under the law, clinical trial sponsors will be required to submit a diversity action plan to the FDA along with other important trial documents. The plans, according to the law, should contain:  

  • The sponsor’s goals for clinical study enrollment, disaggregated by age group, sex, and racial and ethnic characteristics.  
  • The rationale for these enrollment goals, including information about the disease or condition and its prevalence or incidence among various demographics.  
  • An explanation of how the sponsor intends to meet the goals, including demographic-specific outreach and enrollment strategies, inclusion and exclusion practices, and diversity training for study personnel. 

A Major Step Forward 

Requiring a clinical trial to expand the representation of diverse people is a major step forward to reverse systemic and structural social inequities in the health care system.  

In a study published in Nature Cell Biology, the authors, which included Dr. Maria Millan, CIRM’s President & CEO, summarized:  

“To address health disparities and facilitate increasingly personalized treatments, we need to develop new models for basic and disease research that reflect diverse ancestral backgrounds and sex and ensure that diverse populations are included among donors and research participants.” 

For example, low participation of Black Americans in clinical trials is well documented including by the JCO Oncology Practice.  The JCO reports that Black Americans constitute at least 13% of the general population in the United States, account for 22% of annual cancer cases, and succumb to prostate, stomach, uterine cancers, and multiple myeloma, at rates twice as high as white people. And yet, Black Americans reflect only 7% of those enrolled in cancer clinical trials.    

Addressing Diversity in Clinical Trials at CIRM 

CIRM requires plans for inclusion of diverse or underserved demographic groups in the clinical trials we fund.  

Proposals for funding (see samples here) must demonstrate an understanding of health disparities associated with the target indication of the study, and plans to:   

  • Include an inclusive group of participations by race, ethnicity, sex, gender, and age.  
  • Address any barriers to trial participation faced by underserved demographic groups.  
  • Guide, as needed, the cultural competency of study researchers.   

“We have incorporated the principles of promoting diversity, equity and inclusion in our research funding programs, education programs and future programs,” Dr. Millan says. “We believe this is essential to ensure that the therapies our support helps advance will reach all patients in need and in particular communities that are disproportionately affected and/or under-served.” 

To learn more about CIRM’s investments in clinical trials, visit this page on our website. To learn more about participating in a clinical trial, click here

Creating a New Model for Diversity in Scientific and Medical Research

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

Nature Cell Biology cover

The global pandemic has highlighted many of the inequities in our health care system, with the virus hitting communities of color the hardest. That has led to calls for greater diversity, equity and inclusion at every level of scientific research and, ultimately, of medical care. A recently released article in the journal Nature Cell Biology, calls for “new models for basic and disease research that reflect diverse ancestral backgrounds and sex and ensure that diverse populations are included among donors and research participants.”

The authors of the article are Dr. Maria T. Millan, CIRM’s President & CEO; Rick Horwitz Senior Advisor and Executive Director, Emeritus, Allen Institute for Cell Science; Dr. Ekemini Riley, President, Coalition for Aligning Science; and Dr. Ruwanthi N. Gunawardane, Executive Director of the Allen Institute for Cell Science.

Dr. Maria Millan, CIRM’s President & CEO, says we need to make these issues a part of everything we do. “At CIRM we have incorporated the principles of promoting diversity, equity and inclusion in our research funding programs, education programs and future programs. We believe this is essential to ensure that the therapies our support helps advance will reach all patients in need and in particular communities that are disproportionately affected and/or under-served.”

The article highlights how, in addition to cultural, environmental, and socioeconomic factors, genetic factors also appear to play a role in the way disease affects different people. For example, 50 percent of people in South Asia have genetic traits that increases their risk for severe COVID-19, in contrast only 16 percent of Europeans have those traits.

But while some studies have shown how African American men are at greater risk for prostate cancer than white men, most of the research in this and other areas has been done on white populations of European ancestry. Efforts are already underway to change these disparities. For example, the National Institutes of Health (NIH) has sponsored the All of Us Research Program, which is inviting one million people across the U.S. to help build one of the most diverse health databases in history.

The article in Nature Cell Biology stresses the need to account for diversity at the individual molecular, cellular and tissue level. The authors make the point that diversity in those taking part in clinical trials is essential, but equally essential is that diverse biology is accounted for in the scientific work that leads to the development of potential therapies in order to increase the likelihood of success.

That’s why the authors of the article say: “If we are to truly understand human biology, address health disparities, and personalize our treatments, we need to go beyond our important, ongoing efforts in addressing diversity and inclusion in the workforce and the delivery of healthcare. We need to improve the data we generate by including diverse populations among donors and research participants. This will require new models and tools for basic and disease research that more closely reflect the diversity of human tissues, across diverse donor backgrounds.”

“Greater diversity in biological studies is not only the right thing to do, it is crucial to helping researchers make new discoveries that benefit everyone,” said Ru Gunawardane, Executive Director of the Allen Institute for Cell Science.

To do this they propose creating “a suite” of research cells, such as human induced pluripotent stem cell (hiPSC) lines from a diverse group of individuals to reflect the racial, ethnic and gender composition of the population. Human iPSCs are cells taken from any tissue (usually skin or blood) from a child or adult that have been genetically modified to behave like an embryonic stem cell. As the name implies, these cells are pluripotent, which means that they can become any type of adult cell.

CIRM has already created one version of what this suite would look like, through its iPSC Repository, a collection of more than 2,600 hiPSCs from individuals of diverse ancestries, including African, Hispanic, Native American, East and South Asian, and European. The Allen Institute for Cell Science also has a collection that could serve as a model for this kind of repository. Its collection of over 50 hiPSC

lines have been thoroughly analyzed on both a genomic and biological level and could also be broken down to include diversity in donor ethnicity and sex.

Currently researchers use cells from different lines and often follow very different procedures in using them, making it hard to compare results from one study to another. Having a diverse and well defined collection of research cells and cell models that are created by standardized procedures, could make it easier to compare results from different studies and share knowledge within the scientific community. By incorporating diversity in the very early stages of scientific research, the scientists and therapy developers gain a more complete picture of the biology disease and potential treatments.  

Lack of diversity impacts research into Alzheimer’s and dementia

THIS BLOT IS ALSO AVAILABLE AS AN AUDIOCAST ON SPOTIFY

A National Institutes of Allergy and Infectious Diseases clinical trial admissions coordinator collects information from a volunteer to create a medical record. Credit: NIAID

Alzheimer’s research has been in the news a lot lately, and not for the right reasons. The controversial decision by the Food and Drug Administration (FDA) to approve the drug Aduhelm left many people wondering how, when, or even if it should be used on people battling Alzheimer’s disease. Now a new study is raising questions about many of the clinical trials used to test medications like Aduhelm.

The research, published in the journal Jama Neurology, looked at 302 studies on dementia published in 2018 and 2019. Most of these studies were carried out in North America or Europe, and almost 90 percent of those studied were white.

In an accompanying editorial in the journal, Dr. Cerise Elliott, PhD, of the National Institute on Aging (NIA) in Bethesda, Maryland, and co-authors wrote that this limited the value of the studies: “This, combined with the fact that only 22% of the studies they analyzed even reported on race and ethnicity, and of those, a median 89% of participants were white, reflects the fact that recruitment for research participation is challenging; however, it is unacceptable that studies continue to fail to report participant demographics and that publishers allow such omissions.”

That bias is made all the more glaring by the fact that recent data from the Centers for Disease Control and Prevention shows that among people 65 and older, the Black community has the highest prevalence of Alzheimer’s disease and related dementias (13.8%), followed by Latinx (12.2%), non-Hispanic white (10.3%), American Indian and Alaskan Native (9.1%), and Asian and Pacific Islander (8.4%) populations.

The researchers admitted that the limited sample size – more than 40 percent of the studies they looked at included fewer than 50 patients – could have impacted their findings. Even so this clearly suggests there is a huge divide between the people at greatest risk of developing Alzheimer’s, or some other form of dementia, and the people being studied.

In the editorial, Elliott and his colleagues wrote that without a more diverse and balanced patient population this kind of research: “will continue to underrepresent people most affected by the disease and perpetuate systems that exclude important valuable knowledge about the disease.”


There are more details on this in Medpage Today.

An editorial in the New England Journal of Medicine highlights how this kind of bias is all too common in medical research.

“For years, the Journal has published studies that simply do not include enough participants from the racial and ethnic groups that are disproportionately affected by the illnesses being studied to support any conclusions about their treatment. In the United States, for example, Black Americans have high rates of hypertension and chronic kidney disease, Hispanic Americans have the highest prevalence of nonalcoholic fatty liver disease, Native Americans are disproportionately likely to have metabolic syndrome, and Asian Americans are at particular risk for hepatitis B infection and subsequent cirrhosis, but these groups are frequently underrepresented in clinical trials and cohort studies.”

“For too long, we have tolerated conditions that actively exclude groups from critical resources in health care delivery, research, and education. This exclusion has tragic consequences and undermines confidence in the institutions and the people who are conducting biomedical research. And clinicians cannot know how to optimally prevent and treat disease in members of communities that have not been studied.”

The encouraging news is that, finally, people are recognizing the problem and trying to come up with ways to correct it. The not so encouraging is that it took a pandemic to get us to pay attention.

At CIRM we are committed to being part of the solution. We are now requiring everyone who applies to us for funding to have a written plan on Diversity, Equity and Inclusion, laying out how their work will reflect the diversity of California. We know this will be challenging for all of us. But the alternative, doing nothing, is no longer acceptable.

Bridging the gap: training scientists to speak everyday English

Getting a start in your chosen career is never easy. Without experience it’s hard to get a job. And without a job you can’t get experience. That’s why the CIRM Bridges program was created, to help give undergraduate and Master’s level students a chance to get the experience they need to start a career in stem cell research.

Last week our governing Board approved a new round of funding for this program, ensuring it will continue for another 5 years.

But we are not looking to train just any student; we are looking to recruit and retain students who reflect the diversity of California, students who might not otherwise have a chance to work in a world-class stem cell research facility.

Want to know what that kind of student looks like? What kind of work they do? Well, the Bridges program at City College of San Francisco recently got its latest group of Bridges students to record an “elevator pitch”; that’s a short video where they explain what they do and why it’s important, in language anyone can understand.

They do a great job of talking about their research in a way that’s engaging and informative; no easy matter when you are discussing things as complex as using stem cells to test whether everyday chemicals can have a toxic impact on the developing brain, or finding ways to turn off the chromosome that causes Down’s syndrome.

Regular readers of the CIRM blog know we are huge supporters of anything that encourages scientists to be better communicators. We feel that anyone who gets public funding for their work has an obligation to be able to explain that work in words the public can understand. This is not just about being responsive, there’s also a certain amount of self-interest here. The better the public understands the work that scientists do, and how that might impact their health, the more they’ll support that work.

That’s why one of the new elements we have added to the Bridges program is a requirement for the students to engage in community outreach and education. We want them to be actively involved in educating diverse communities around California about the importance of stem cell research and the potential benefits for everyone.

We have also added a requirement for the students to be directly engaged with patients. Too often in the past students studied solely in the lab, learning the skills they’ll need for a career in science. But we want them to also understand whom these skills will ultimately benefit; people battling deadly diseases and disorders. The best way to do that is for the students to meet these people face-to-face, at a bone marrow drive or at a health fair for example.

When you have seen the face of someone in need, when you know their story, you are more motivated to find a way to help them. The research, even if it is at a basic level, is no longer about an abstract idea, it’s about someone you know, someone you have met.