Boosting the blood system after life-saving therapy

Following radiation, the bone marrow shows nearly complete loss of blood cells in mice (left). Mice treated with the PTP-sigma inhibitor displayed rapid recovery of blood cells (purple, right): Photo Courtesy UCLA

Chemotherapy and radiation are two of the front-line weapons in treating cancer. They can be effective, even life-saving, but they can also be brutal, taking a toll on the body that lasts for months. Now a team at UCLA has developed a therapy that might enable the body to bounce back faster after chemo and radiation, and even make treatments like bone marrow transplants easier on patients.

First a little background. Some cancer treatments use chemotherapy and radiation to kill the cancer, but they can also damage other cells, including those in the bone marrow responsible for making blood stem cells. Those cells eventually recover but it can take weeks or months, and during that time the patient may feel fatigue and be more susceptible to infections and other problems.

In a CIRM-supported study, UCLA’s Dr. John Chute and his team developed a drug that speeds up the process of regenerating a new blood supply. The research is published in the journal Nature Communications.

They focused their attention on a protein called PTP-sigma that is found in blood stem cells and acts as a kind of brake on the regeneration of those cells. Previous studies by Dr. Chute showed that, after undergoing radiation, mice that have less PTP-sigma were able to regenerate their blood stem cells faster than mice that had normal levels of the protein.

John Chute: Photo courtesy UCLA

So they set out to identify something that could help reduce levels of PTP-sigma without affecting other cells. They first identified an organic compound with the charming name of 6545075 (Chembridge) that was reported to be effective against PTP-sigma. Then they searched a library of 80,000 different small molecules to find something similar to 6545075 (and this is why science takes so long).

From that group they developed more than 100 different drug candidates to see which, if any, were effective against PTP-sigma. Finally, they found a promising candidate, called DJ009. In laboratory tests DJ009 proved itself effective in blocking PTP-sigma in human blood stem cells.

They then tested DJ009 in mice that were given high doses of radiation. In a news release Dr. Chute said the results were very encouraging:

“The potency of this compound in animal models was very high. It accelerated the recovery of blood stem cells, white blood cells and other components of the blood system necessary for survival. If found to be safe in humans, it could lessen infections and allow people to be discharged from the hospital earlier.”

Of the radiated mice, most that were given DJ009 survived. In comparison, those that didn’t get DJ009 died within three weeks.

They saw similar benefits in mice given chemotherapy. Mice with DJ009 saw their white blood cells – key components of the immune system – return to normal within two weeks. The untreated mice had dangerously low levels of those cells at the same point.

It’s encouraging work and the team are already getting ready for more research so they can validate their findings and hopefully take the next step towards testing this in people in clinical trials.

Stem cell progress and promise in fighting leukemia

Computer illustration of a cancerous white blood cell in leukemia.

There is nothing you can do to prevent or reduce your risk of leukemia. That’s not a very reassuring statement considering that this year alone almost 62,000 Americans will be diagnosed with leukemia; almost 23,000 will die from the disease. That’s why CIRM is funding four clinical trials targeting leukemia, hoping to develop new approaches to treat, and even cure it.

That’s also why our next special Facebook Live “Ask the Stem Cell Team” event is focused on this issue. Join us on Thursday, August 29th from 1pm to 2pm PDT to hear a discussion about the progress in, and promise of, stem cell research for leukemia.

We have two great panelists joining us:

Dr. Crystal Mackall, has many titles including serving as the Founding Director of the Stanford Center for Cancer Cell Therapy.  She is using an innovative approach called a Chimeric Antigen Receptor (CAR) T Cell Therapy. This works by isolating a patient’s own T cells (a type of immune cell) and then genetically engineering them to recognize a protein on the surface of cancer cells, triggering their destruction. This is now being tested in a clinical trial funded by CIRM.

Natasha Fooman. To describe Natasha as a patient advocate would not do justice to her experience and expertise in fighting blood cancer and advocating on behalf of those battling the disease. For her work she has twice been named “Woman of the Year” by the Leukemia and Lymphoma Society. In 2011 she was diagnosed with a form of lymphoma that was affecting her brain. Over the years, she would battle lymphoma three times and undergo chemotherapy, radiation and eventually a bone marrow transplant. Today she is cancer free and is a key part of a CIRM team fighting blood cancer.

We hope you’ll join us to learn about the progress being made using stem cells to combat blood cancers, the challenges ahead but also the promising signs that we are advancing the field.

We also hope you’ll take an active role by posting questions on Facebook during the event, or sending us questions ahead of time to info@cirm.ca.gov. We will do our best to address as many as we can.

Here’s the link to the event, feel free to share this with anyone you think might be interested in joining us for Facebook Live “Ask the Stem Cell Team about Leukemia”

Antibody effective in cure for rare blood disorders

3D illustration of an antibody binding to a designated target.
Illustration created by Audra Geras.

A variety of diseases can be traced to a simple root cause: problems in the bone marrow. The bone marrow contains specialized stem cells known as hematopoietic stem cells (HSCs) that give rise to different types of blood cells. As mentioned in a previous blog about Sickle Cell Disease (SCD), one problem that can occur is the production of “sickle like” red blood cells. In blood cancers like leukemia, there is an uncontrollable production of abnormal white blood cells. Another condition, known as myelodysplastic syndromes (MDS), are a group of cancers in which immature blood cells in the bone marrow do not mature and therefore do not become healthy blood cells.

For diseases that originate in the bone marrow, one treatment involves introducing healthy HSCs from a donor or gene therapy. However, before this type of treatment can take place, all of the problematic HSCs must be eliminated from the patient’s body. This process, known as pre-treatment, involves a combination of chemotherapy and radiation, which can be extremely toxic and life threatening. There are some patients whose condition has progressed to the point where their bodies are not strong enough to withstand pre-treatment. Additionally, there are long-term side effects that chemotherapy and radiation can have on infant children that are discussed in a previous blog about pediatric brain cancer.

Could there be a targeted, non-toxic approach to eliminating unwanted HSCs that can be used in combination with stem cell therapies? Researchers at Stanford say yes and have very promising results to back up their claim.

Dr. Judith Shizuru and her team at Stanford University have developed an antibody that can eliminate problematic blood forming stem cells safely and efficiently. The antibody is able to identify a protein on HSCs and bind to it. Once it is bound, the protein is unable to function, effectively removing the problematic blood forming stem cells.

Dr. Shizuru is the senior author of a study published online on February 11th, 2019 in Blood that was conducted in mice and focused on MDS. The results were very promising, demonstrating that the antibody successfully depleted human MDS cells and aided transplantation of normal human HSCs in the MDS mouse model.

This proof of concept holds promise for MDS as well as other disease conditions. In a public release from Stanford Medicine, Dr. Shizuru is quoted as saying, “A treatment that specifically targets only blood-forming stem cells would allow us to potentially cure people with diseases as varied as sickle cell disease, thalassemia, autoimmune disorders and other blood disorders…We are very hopeful that this body of research is going to have a positive impact on patients by allowing better depletion of diseased cells and engraftment of healthy cells.”

The research mentioned was partially funded by us at CIRM. Additionally, we recently awarded a $3.7 million dollar grant to use the same antibody in a human clinical trial for the so-called “bubble baby disease”, which is also known as severe combined immunodeficiency (SCID). You can read more about that award on a previous blog post linked here.

New hope for stem cell therapy in patients with leukemia

LeukemiaWhiteBloodCell

Leukemia white blood cell

Of the many different kinds of cancer that affect humans, leukemia is the most common in young people. As with many types cancer, doctors mostly turn to chemotherapy to treat patients. Chemotherapy, however, comes with its own share of issues, primarily severe side effects and the constant threat of disease recurrence.

Stem cell therapy treatment has emerged as a potential cure for some types of cancer, with leukemia patients being among the first groups of patients to receive this type of treatment. While exciting because of the possibility of a complete cure, stem cell therapy comes with its own challenges. Let’s take a closer look.

Leukemia is characterized by abnormal white blood cells (also known as the many different types of cells that make up our immune system) that are produced at high levels. Stem cell therapy is such an appealing treatment option because it involves replacing the patient’s aberrant blood stem cells with healthy ones from a donor, which provides the possibility of complete and permanent remission for the patient.

Unfortunately, in approximately half of patients who receive this therapy, the donor cells (which turn into immune cells), can also destroy the patients healthy tissue (i.e. liver, skin etc…), because the transplanted blood stem cells recognize patient’s tissue as foreign. While doctors try to lessen this type of response (also known as graft versus host disease (GVHD)), by suppressing the patient’s immune system, this procedure lessens the effectiveness of the stem cell therapy itself.

Now scientists at the University of Zurich have made an important discovery – published in the journal Science Translational Medicine – that could mitigate this potentially fatal response in patients. They found that a molecule called GM-CSF, is a critical mediator of the severity of GVHD. Using a mouse model, they showed that if the donor cells were unable to produce GM-CSF, then mice fared significantly better both in terms of less damage to tissues normally affected by GVHD, such as the skin, and overall survival.

While exciting, the scientists were concerned about narrowing in on this molecule as a potential target to lessen GVHD, because GM-CSF, an important molecule in the immune system, might also be important for ensuring that the donor immune cells do their jobs properly. Reassuringly, the researchers found that blocking GM-CSF’s function had no effect on the ability of the donor cells to exert their anti-cancer effect. This was surprising because previously the ability of donor cells to cause GVHD, versus protect patients from the development of cancer was thought to occur via the same biological mechanisms.

Most excitingly, however, was that finding that high levels of GM-CSF are also observed in patient samples, and that the levels of GM-CSF correlate to the severity of GVHD. Dr. Burkhard Becher and his colleagues, the authors of this study, now want to run a clinical trial to determine whether blocking GM-CSF blocks GVHD in humans like it does in mice. In a press release, Dr. Becher states the importance of these findings:

“If we can stop the graft-versus-host response while preserving the anti-cancer effect, this procedure can be employed much more successfully and with fewer risks to the patient. This therapeutic strategy holds particular promise for patients with the poorest prognosis and highest risk of fatality.”

Surprise findings about bone marrow transplants could lead to more effective stem cell therapies

Surgery_0

Bone marrow transplant: Photo courtesy FierceBiotech

Some medical therapies have been around for so long that we naturally assume we understand how they work. That’s not always the case. Take aspirin for example. It’s been used for more than 4,000 years to treat pain and inflammation but it was only in the 1970’s that we really learned how it works.

The same is now true for bone marrow transplants. Thanks to some skilled research at the Fred Hutchinson Cancer Research Center in Seattle.

Bone marrow transplants have been used for decades to help treat deadly blood cancers such as leukemia and lymphoma. The first successful bone marrow transplant was in the late 1950’s, involving identical twins, one of whom had leukemia. Because the twins shared the same genetic make-up the transplant avoided potentially fatal problems like graft-vs-host-disease, where the transplanted cells attack the person getting them. It wasn’t until the 1970’s that doctors were able to perform transplants involving people who were not related or who did not share the same genetic make-up.

In a bone marrow or blood stem cell transplant, doctors use radiation or chemotherapy to destroy the bone marrow in a patient with, say, leukemia. Then cancer-free donor blood stem cells are transplanted into the patient to help create a new blood system, and rebuild their immune system.

Surprise findings

In the study, published in the journal Science Translational Medicine, the researchers were able to isolate a specific kind of stem cell that helps repair and rebuild the blood and immune system.

The team found that a small subset of blood stem cells, characterized by having one of three different kinds of protein on their surface – CD34 positive, CD45RA negative and CD90 positive – did all the work.

In a news release Dr. Hans-Peter Kiem, a senior author on the study, says some of their initial assumptions about how bone marrow transplants work were wrong:

“These findings came as a surprise; we had thought that there were multiple types of blood stem cells that take on different roles in rebuilding a blood and immune system. This population does it all.”

Tracking the cells

The team performed bone-marrow transplants on monkeys and then followed those animals over the next seven years, observing what happened as the donor cells grew and multiplied.

They tracked hundreds of thousands of cells in the blood and found that, even though the cells with those three proteins on the surface made up just five percent of the total blood supply, they were responsible for rebuilding the entire blood and immune system.

Study co-author Dr. Jennifer Adair said they saw evidence of this rebuilding within 10 days of the transplant:

“Our ability to track individual blood cells that developed after transplant was critical to demonstrating that these really are stem cells.”

Hope for the future

It’s an important finding because it could help researchers develop new ways of delivering bone marrow transplants that are both safer and more effective. Every year some 3,000 people die because they cannot find a matching donor. Knowing which stem cells are specifically responsible for an effective transplant could help researchers come up with ways to get around that problem.

Although this work was done in monkeys, the scientists say humans have similar kinds of stem cells that appear to act in the same way. Proving that’s the case will obviously be the next step in this research.

 

Stem cell stories that caught our eye: a surprising benefit of fasting, faster way to make iPSCs, unlocking the secret of leukemia cancer cells

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Fasting

Is fasting the fountain of youth?

Among the many insults our bodies endure in old age is a weakened immune system which leaves the elderly more susceptible to infection. Chemotherapy patients also face the same predicament due to the immune suppressing effects of their toxic anticancer treatments. While many researchers aim to develop drugs or cell therapies to protect the immune system, a University of Southern California research report this week suggests an effective alternative intervention that’s startlingly straightforward: fasting for 72 hours.

The study published in Cell Stem Cell showed that cycles of prolonged fasting in older mice led to a decrease in white blood cells which in turn set off a regenerative burst of blood stem cells. This restart of the blood stem cells replenished the immune system with new white blood cells. In a pilot Phase 1 clinical trial, cancer patients who fasted 72 hours before receiving chemotherapy maintained normal levels of white blood cells.

A look at the molecular level of the process pointed to a decrease in the levels of a protein called PKA in stem cells during the fasting period. In a university press release carried by Science Daily, the study leader, Valter Longo, explained the significance of this finding:

“PKA is the key gene that needs to shut down in order for these stem cells to switch into regenerative mode. It gives the ‘okay’ for stem cells to go ahead and begin proliferating and rebuild the entire system. And the good news is that the body got rid of the parts of the system that might be damaged or old, the inefficient parts, during the fasting. Now, if you start with a system heavily damaged by chemotherapy or aging, fasting cycles can generate, literally, a new immune system.”

In additional to necessary follow up studies, the team is looking into whether fasting could benefit other organ systems besides the immune system. If the data holds up, it could be that regular fasting or direct targeting of PKA could put us on the road to a much more graceful and healthier aging process.

4955224186_31f969e6fd_m

Faster, cheaper, safer way to use iPS cells

Science, like traffic in any major city, never moves quite as quickly as you would like, but now Japanese researchers are teaming up to develop a faster, and cheaper way of using iPSC’s , pluripotent stem cells that are reprogrammed from adult cells, for transplants.

Part of the beauty of iPSCs is that because those cells came from the patient themselves, there is less risk of rejection. But there are problems with this method. Taking adult cells and turning them into enough cells to treat someone can take a long time. It’s expensive too.

But now researchers at Kyoto University and three other institutions in Japan have announced they are teaming up to change that. They want to create a stockpile of iPSCs that are resistant to immunological rejection, and are ready to be shipped out to researchers.

Having a stockpile of ready-to-use iPSCs on hand means researchers won’t have to wait months to develop their own, so they can speed up their work.

Shinya Yamanaka, who developed the technique to create iPSCs and won the Nobel prize for his efforts, say there’s another advantage with this collaboration. In a news article on Nikkei’s Asian Review he said these cells will have been screened to make sure they don’t carry any potentially cancer-causing mutations.

“We will take all possible measures to look into the safety in each case, and we’ll give the green light once we’ve determined they are sound scientifically. If there is any concern at all, we will put a stop to it.”

CIRM is already working towards a similar goal with our iPSC Initiative.

Unlocking the secrets of leukemia stem cells

the-walking-dead-season-6-zombies

Zombies: courtesy “The Walking Dead”

Any article that has an opening sentence that says “Cancer stem cells are like zombies” has to be worth reading. And a report in ScienceMag  that explains how pre-leukemia white blood cell precursors become leukemia cancer stem cells is definitely worth reading.

The article is about a study in the journal Cell Stem Cell by researchers at UC San Diego. The senior author is Catriona Jamieson:

“In this study, we showed that cancer stem cells co-opt an RNA editing system to clone themselves. What’s more, we found a method to dial it down.”

An enzyme called ADAR1 is known to spur cancer growth by manipulating small pieces of genetic material known as microRNA. Jamieson and her team wanted to track how that was done. They discovered it is a cascade of events, and that once the first step is taken a series of others quickly followed on.

They found that when white blood cells have a genetic mutation that is linked to leukemia, they are prone to inflammation. That inflammation then activates ADAR1, which in turn slows down a segment of microRNA called let-7 resulting in increased cell growth. The end result is that the white blood cells that began this cascade become leukemia stem cells and spread an aggressive and frequently treatment-resistant form of the blood cancer.

Having uncovered how ADAR1 works Jamieson and her team then tried to find a way to stop it. They discovered that by blocking the white blood cells susceptibility to inflammation, they could prevent the cascade from even starting. They also found that by using a compound called 8-Aza they could impede ADAR1’s ability to stimulate cell growth by around 40 percent.

Jamieson

Catriona Jamieson – definitely not a zombie

Jamieson says the findings open up all sorts of possibilities:

“Based on this research, we believe that detecting ADAR1 activity will be important for predicting cancer progression. In addition, inhibiting this enzyme represents a unique therapeutic vulnerability in cancer stem cells with active inflammatory signaling that may respond to pharmacologic inhibitors of inflammation sensitivity or selective ADAR1 inhibitors that are currently being developed.”

This wasn’t a CIRM-funded study but we have supported other projects by Dr. Jamieson that have led to clinical trials.

 

 

 

 

Chemo-Induced Heart Failure: Using Stem Cells to Identify Those at Risk

The good news is you’re cancer free, the bad news is you need a heart transplant.

It almost sounds like the punchline to a joke, but it’s no laugher matter because the scenario is real for some cancer patients.  Chemotherapy is a life saver for many but certain doses can be so toxic that it’s often hard to tell which symptoms are due to the cancer and which are due to the drug. Doxorubicin, used to treat around 50% of people diagnosed with breast cancer, is particularly awful. It’s been estimated that about 8% of those treated with doxorubicin experience side effects to the heart with symptoms ranging from arrhythmias to congestive heart failure severe enough to require heart transplantation.

800px-Doxorubicin_3D_ball

doxorubicin, a chemotherapy drug that carries a risk of serious heart damage

Avoiding the fire after jumping out of the frying pan
To avoid this predicament, doctors need a way to screen for an increased risk of heart damage due to doxorubicin before a patient even sets foot in a chemotherapy clinic. A CIRM-funded Stanford research team has made a big step toward that goal. Reporting yesterday in Nature Medicine, the scientists describe a non-invasive laboratory method that could help pinpoint which breast cancer patients are most likely to experience so-called doxorubicin-induced cardiotoxicity, or DIC.

Eight woman with breast cancer who had received doxorubicin treatment were recruited for the study. Four suffered from DIC while the other four did not. Skin samples were obtained from each person as well as four healthy volunteers. In the lab, the skin fibroblasts were reprogrammed into embryonic-like induced pluripotent stem cells (iPS) and then specialized into beating heart muscle cells or cardiomyocytes.

Chemo-induced heart damage in a dish
To find out if these patient-derived heart cells in the lab reflect what happened inside the patients’ hearts, the team compared the effects of doxorubicin on the different groups of cells. Looking at cell survival and the rhythmic beating of the heart cells, differences emerged. Lead author Paul Burridge summarized the results in a university press release:

“We found that cells from the patients who had experienced doxorubicin toxicity responded more negatively to the presence of the drug. They beat more irregularly in response to increased levels of doxorubicin, and we saw a significant increase in cell death after 72 hours of exposure to the drug when we compared those cells to cells from healthy controls or patients who didn’t have heart damage.”

Screen Shot 2016-04-19 at 9.27.23 AM

iPS-derived heart muscle cells from patients without (DOX, first row) and with (DOXTOX, bottom row) doxorubicin toxicity were treated with increasing amounts of the doxorubicin. The regular green stripe patterns indicate normal, intact muscle structures. By 0.1 µM of drug (second column), the DOXTOX structures become disarrayed while the DOX cells remain intact. Image: Burridge et al. Nat Med. 2016 Apr 18.

So how exactly does doxorubicin wreak havoc on the heart and why are some patients more sensitive to the drug?

Feeling the burn of reactive oxygen species (ROS)
The answers, in part, lie inside cellular structures called mitochondria where calories, stored in the form of sugar and fat, are “burned” to generate the body’s energy needs.  A harmful byproduct of this energy metabolism is reactive oxygen species (ROS), a chemically reactive form of oxygen that damages the mitochondria and other cell components. This damage is especially bad for heart cells which are 35% mitochondria by volume due to their intense energy needs as they busily beat for a lifetime.

Now, earlier research studies had pointed to ROS production in mitochondria as a key deliverer of doxorubicin’s destructive effects on the hearts of chemotherapy patients. So the Stanford team investigated the drug’s effects on ROS production and on mitochondria function in context of their patient derived heart cells. In response to doxorubicin, the scientists found that the cells from patients with doxorubicin induced heart damage generated more ROS compared to the cells from patients who had no heart damage. Along with the higher ROS production, mitochondria function was more compromised in the doxorubicin-sensitive heart cells.

And even in the absence of treatment, there was a lower baseline function and quantity of mitochondria in the doxorubicin-sensitive cells. These results suggest some underlying genetic differences in the heart muscle cells of patients with DIC. The team plans to perform DNA comparisons to pinpoint the genes involved and ultimately help patients survive cancer without the fear of swapping it for another life threatening illness.

iPS cells: opening new paths for helping cancers patients
Compared to tools he had previously relied on, Joseph Wu, the team leader and director of the Stanford’s Cardiovascular Institute, is very excited about his lab’s future research possibilities:

“In the past, we’ve tried to model this doxorubicin toxicity in mice by exposing them to the drug and then removing the heart for study. Now we can continue our studies in human cells with iPS-derived heart muscle cells from real patients. One day we may even be able to predict who is likely to get into trouble.”

Combination Cancer Therapy Gives Cells a Knockout Punch

For some forms of cancer, there really is no way to truly eradicate it. Even the most advanced chemotherapy treatments leave behind some straggler cells that can fuel a relapse.

By hitting breast cancer cells with a targeted therapeutic immediately after chemotherapy, researchers were able to target cancer cells during a transitional stage when they were most vulnerable. [Credit: Aaron Goldman]

By hitting breast cancer cells with a targeted therapeutic immediately after chemotherapy, researchers were able to target cancer cells during a transitional stage when they were most vulnerable.
[Credit: Aaron Goldman]

But now, scientists have devised a unique strategy, something they are calling a ‘one-two punch’ that can more effectively wipe out dangerous tumors, and lower the risk of them ever returning for a round two.

Reporting in the latest issue of the journal Nature Communications, bioengineers at Brigham and Women’s Hospital (BWH) in Boston describe how treating breast cancer cells with a targeted drug immediately after chemotherapy was effective at killing the cancer cells and preventing a recurrence. According to lead scientist Shiladitya Sengupta, these findings were wholly unexpected:

“We were studying the fundamentals of how [drug] resistance develops and looking to understand what drives [cancer] relapse. What we found is a new paradigm for thinking about chemotherapy.”

In recent years, many scientists have suggested cancer stem cells are one of the biggest hurdles to curing cancer. Cancer stem cells are proposed to be a subpopulation of cancer cells that are resistant to chemotherapy. As a result, they can propagate the cancer after treatment, leading to a relapse.

In this work, Sengupta and his colleagues treated breast cancer cells with chemotherapy. And here is where things started getting interesting.

After chemotherapy, the breast cancer cells began to morph into cells that bore a close resemblance to cancer stem cells. For a brief period of time after treatment, these cells were neither fully cancer cells, nor fully stem cells. They were in transition.

The team then realized that because these cells were in transition, they may be more vulnerable to attack. Testing this hypothesis in mouse models of breast cancer, the team first zapped the tumors with chemotherapy. And, once the cells began to morph, they then blasted them with a different type of drug. The tumors never grew back, and the mice survived.

Interestingly, the team did not have similar success when they altered the timing of when they administered the therapy. Treating the mice with both types of drugs simultaneously didn’t have the same effect. Neither did increasing the time between treatments. In order to successfully treat the tumor they had a very slim window of opportunity.

“By treating with chemotherapy, we’re driving cells through a transition state and creating vulnerabilities,” said Aaron Goldman, the study’s first author. “This opens up the door: we can then try out different combinations and regimens to find the most effective way to kill the cells and inhibit tumor growth.”

In order to test these combinations, the researchers developed an ‘explant,’ a mini-tumor derived from a patient’s biopsy that can be grown in an environment that closely mimics its natural surroundings. The ultimate goal, says Goldman, is to map the precise order and timing of this treatment regimen in order to move toward clinical trials:

“Our goal is to build a regimen that will be [effective] for clinical trials. Once we’ve understood specific timing, sequence of drug delivery and dosage better, it will be easier to translate these findings clinically.”

Clever Stem Cells Withstand Chemo Drug’s Harmful Side Effects

For some conditions, it seem that the treatment can cause almost as many problems as than the disease itself. That’s often the case with some forms of cancer, such as acute lymphoblastic leukemia.

The most common type of cancer to affect children, treatment usually involves chemotherapy with the drug methotrexate (MTX). And, while effective at destroying the deadly cancer cells circulating in the patients’ blood, it also does significant damage to another part of the body: the bone.

Scientists have long sought a method that helps patients recover more quickly from the harmful effects of chemotherapy.

Scientists have long sought a method that helps patients recover more quickly from the harmful effects of chemotherapy.

But new research from Brown University’s Dr. Eric Darling and his team has found that not all types of bone cells are equally at risk of being damaged by MTX. In fact, one type may actually be impervious to the drug’s negative effects. These findings, published last week in the journal Experimental Cell Research, are especially important as doctors look to ways that help the youngest, most vulnerable cancer patients heal faster after treatment—regaining bone strength that can take them into a healthy adulthood.

As Olivia Beane, a graduate student in the Darling Lab and the lead author of this paper, explained in a news release:

“Kids undergo chemotherapy at such an important time when they should be growing, but instead they are introduced to this very harsh environment where bone cells are damaged with these drugs. If we found a stem cell that was resistant to the chemotherapeutic agent and could promote bone growth by becoming bone itself, then maybe they wouldn’t have these issues.”

The cell type Beane is referring to are called adipose-derived stem cells, or ASCs, which normally mature from this early, stem cell state into several types of mature cells, including bone tissue. Initially, Beane had been researching the basic properties of ASCs. But during her experiments she discovered that ASCs, unlike other stem cell types that mature into bone, appear to survive MTX. Now they just needed to understand why.

Further experiments revealed the underlying strengths of ASCs in resisting MTX’s effects. Normally, MTX works by binding to and shutting down a protein in the cell called dihydrofolate reductase, which is normally involved in synthesizing DNA. With DNA production shut down, cells can’t divide and multiply—which is great for killing harmful cancer cells, but potentially harmful as it can also destroy cells it shouldn’t.

However, ASCs are a little bit different. When coming into contact with MTX, these cells ramp up the DNA-promoting dihydrofolate reductase, producing more than enough to overcome a normal dose of MTX.

This discovery has raised some intriguing possibilities for treating MTX’s side effects. As Darling explained:

“Chemotherapies do a great job of killing cells and killing the cancer, and that’s what you want. But then there is a stage after that where you need to do recovery and regeneration.”

And while the results of this study are preliminary, the researchers are cautiously optimistic that the MTX-resistant properties of ASCs could be the key to fast tracking recovery times.

The first step, Darling adds, is to save a life. And MTX has done that for countless children afflicted by cancer. But the cost of saving that life should also be taken into account—so that these children who have already been through so much may one day not need to worry about long, healthy lives as they mature into adults.

Want to learn more about how CIRM-funded researchers are developing new tools to fight all types of leukemia? Check out our Leukemia Fact Sheet.

Anne Holden

Out with the Old and in with the New: Starvation Sparks Stem Cells to Replenish Immune System

New research from California scientists has revealed a startling side effect to prolonged starvation, or fasting.

In the latest issue of the journal Cell Stem Cell, scientists from the University of Southern California describe how fasting triggers the human immune system to flush out old, damaged cells and replace them with new ones. This marks the first time that this phenomenon has been directly observed, and has major implications for diseases associated with a declining immune system, including a variety of age-related conditions and cancer chemotherapy.

Scientists have discovered how cycles of prolonged fasting can help flush out damaged immune system cells.

Scientists have discovered how cycles of prolonged fasting can help flush out damaged immune system cells.

In lab experiments first in animal models, and then followed by a Phase 1 human clinical trial, the research team found that regular cycles of fasting, each lasting two to four days, triggered the immune system to flush out immune cells. Much to the team’s surprise, however, they also found that these fasting cycles also triggered stem cells—which had been dormant—to spring into action and produce a fresh supply.

While initially unexpected, these findings made sense to the team. As corresponding author Dr. Valter Longo explained in today’s news release:

“When you starve, the system tries to save energy, and one of the things it can do to save energy is to recycle a lot of the immune cells that are not needed, especially those that may be damaged. What we started noticing in both our human work and animal work is that the white blood cell count goes down with prolonged fasting. Then when you re-feed, the blood cells come back. So we started thinking, well, where does it come from?”

Scientists have long known that when fasting, your body turns to its reserves for nutrients, using up stores of glucose and fat. At the same time, your body also breaks down white blood cells—the major component of the immune system.

So, Longo and his team mapped precisely how this change takes place. They observed that prolonged fasting also reduced levels of an enzyme called PKA. In a previous study, the team had found a link between reduced PKA levels and increased longevity in simple organisms. Research by other groups also found a connection between PKA and the ability of stem cells to self-renew. In this study, the team further defined that relationship. As Longo continued:

“PKA is the key gene that needs to shut down in order for these stem cells to switch into regenerative mode. And the good news is that the body got rid of the parts of the system that might be damaged or old…during fasting. Now if you start with a system heavily damaged, fasting cycles can generate, literally, a new immune system.”

These findings are particularly encouraging with regards to chemotherapy, which has the unfortunate side effect of often damaging the body’s immune system. But if the patient also participates in cycles of fasting, Longo and his team hypothesize that this could help repair their immune system at a much faster pace, improving their quality of life during treatment.

In order to test this hypothesis, the team then turned to the Phase 1 human clinical trial. They instructed patients currently undergoing chemotherapy to fast for a period of 72 hours. The team found that this fasting did protect against at least some of the toxic effects of chemotherapy treatment.

The next steps, says Longo, are to conduct additional experiments in both animal models and clinical trials. But the team is optimistic that these results could apply beyond chemotherapy.

“We are investigating the possibility that these effects are applicable to many different systems and organs, not just the immune system.”