How these scholars are growing the regenerative medicine field in California

THIS BLOG IS ALSO AVAILABLE AS AN AUDIO CAST

CIRM Scholar Alessandra Rodriguez y Baena

Through our new Strategic Plan, the California Institute for Regenerative Medicine (CIRM) will build inclusive participation opportunities for all stakeholders, from the students to the workforce to the patients.  

That said, it’s important to recognize the important work CIRM has already done to train the next generation of scientists and grow the field of regenerative medicine. Alessandra’s story illustrates just one of the many ways we have done that in the past, and we intend to do even more in the future. 

Gaining Exposure to Innovative Research

CIRM Scholar Alessandra Rodriguez y Baena was a Master’s student at Cal Poly, San Luis Obispo. With the support of CIRM’s Bridges Program, she became a CIRM intern in the Willert Lab at UC San Diego.  

As a student researcher, CIRM provided her with supportive mentors (both at Cal Poly and UCSD), hands-on training in the field of regenerative medicine, and exposure to innovative ideas and research. The program also provided Alessandra with a stipend to help cover expenses. This was particularly helpful for students from low-income backgrounds who otherwise might not be able to afford to go to college. 

“I always recommend my undergraduate students who are interested in research to apply to the Bridges programs because, to me, it was a defining experience that led me to pursue my passion for stem cell research as well as teaching,” Alessandra says. 

Alessandra is now a fourth-year PhD student in the Forsberg Lab in the department of Molecular, Cell & Developmental Biology at UC Santa Cruz where she is studying the epigenetic regulation of aging in bone marrow stem cells.  

In addition to Alessandra, CIRM has provided opportunities in science to nearly 3,000 students across California. These include high schoolers in our SPARK Program, as well as undergrads and graduate students in our Bridges Program and pre and post-doctoral students in our Research Training program. Many of these are from diverse backgrounds.  

A Game Changer

Sneha Santosh, another CIRM Scholar, first heard about CIRM’s Bridges to Stem Cell Therapy and Research internship when she was graduating from the UC Davis. She was pursuing a degree in microbial biotechnology and thinking about getting a master’s degree in biotechnology. She said the opportunity to be part of a program that is training the next generation of scientists was a game changer for her.  

Through the Bridges Program, she learned about stem cells’ power to treat a disease’s root cause rather than just the symptoms. She saw how these transformative therapies changed people’s lives. 

Today, she is a cell culture associate with Novo Nordisk, a leading global healthcare company in Fremont, California 

CIRM’s New Strategic Plan

Alessandra and Sneha’s stories capture CIRM’s commitment to building education and training programs, and providing opportunities to build a diverse, highly skilled regenerative medicine workforce. We’ll be covering this ambitious yet achievable goal in our upcoming blog posts.  

To learn more about CIRM’s work and plans build the regenerative medicine field, check out our new 5-year strategic plan on our website.  

Stem cell treatment for spinal cord injury offers improved chance of independent life for patients

kris-boesen

Kris Boesen, CIRM spinal cord injury clinical trial patient works to strengthen his upper body. (Photo/Greg Iger)

A spinal cord injury is devastating, changing a person’s life in a heartbeat. In the past there was little that doctors could do other than offer pain relief and physical therapy to try and regain as much muscle function as possible. That’s why the latest results from the CIRM-supported Asterias Biotherapeutics spinal cord injury trial are so encouraging.

Asterias is transplanting what they call AST-OPC1 cells into patients who have suffered injuries that left them paralyzed from the neck down.  AST-OPC1 are oligodendrocyte progenitor cells, which develop into cells that support and protect nerve cells in the central nervous system, the area damaged in spinal cord injury. It’s hoped the treatment will restore connections at the injury site, allowing patients to regain some movement and feeling.

The latest results seem to suggest they are doing just that.

In a news release, Asterias reports that of the 25 patients treated in this clinical trial none have experienced serious side effects. They also reported that magnetic resonance imaging (MRI) tests show that more than 95 percent of the patients have shown evidence of what’s called “tissue matrix” at the injury site. This is encouraging because it suggests the implanted cells are engrafting and helping prevent a cavitation, a serious process that often occurs in spinal cord injuries and can lead to permanent loss of muscle and sensory function plus chronic pain.

The study also shows that after six months:

  • 100 percent of the patients in Group 5 (who received 20 million cells) have recovered at least one motor level (for example increased ability to use their arms) on at least one side
  • Two patients in Group 5 recovered one motor level on both sides
  • Altogether four of the 25 patients have recovered two or more motor levels on at least one side.

Not surprisingly Ed Wirth, the Chief Medical Officer at Asterias, was pleased with the results:

“The results from the study remain encouraging as the six-month follow-up data continued to demonstrate a positive safety profile and show that the AST-OPC1 cells are successfully engrafting in patients.”

While none of the patients are able to walk, just regaining some use of their arms or hands can have a hugely important impact on their quality of life and their ability to lead an independent life. And, because lifetime costs of taking care of someone who is paralyzed from the neck or chest down can run as high as $5 million, anything that increases a patient’s independence can have a big impact on those costs.

The impact of this research is helping change the lives of the patients who received it. One of those patients is Jake Javier. We have blogged about Jake several times over the last two years and recently showed this video about his first year at Cal Poly and how Jake is turning what could have been a life-ending event into a life-affirming one.

 

Stem Cell Roundup: Jake Javier’s amazing spirit; TV report highlights clinic offering unproven stem cell therapies

JakeJavier_A_0107_20161207142726_JakeJavier_SeesTheDay

Jake Javier: Photo Michael Clemens, Sees the Day

In the Roundup we usually focus on studies that highlight advances in stem cell research but today we’re going to do something a little different. Instead of relying on print for our stories, we’re turning to video.

We begin with a piece about Jake Javier. Regular readers of our blog will remember that Jake is the young man who broke his neck the day before he graduated high school, leaving him paralyzed from the upper chest down.

After enrolling in the CIRM-funded Asterias clinical trial, and receiving a transplant of 10 million stem cells, Jake regained enough use of his arms and hands to be able to go to Cal Poly and start his life over.

This video highlights the struggles and challenges he faced in his first year, and his extraordinary spirit in overcoming them.

(thanks to Matt Yoon and his Creative Services team at Cal Poly for this video)

Going Undercover

The second video is from the NBC7 TV station in San Diego and highlights one of the big problems in regenerative medicine today, clinics offering unproven therapies. The investigative team at NBC7 went undercover at a stem cell clinic seminar where presenters talked about “the most significant breakthrough in natural medicine” for improving mobility and reducing pain. As the reporter discovered, the reality didn’t live up to the promise.

NBC7 Investigative Report