Enabling the Best Choice for Patients: The Need for Effective Patient Navigation

Making sure patients get the treatment they need and not a “snake oil” substitute

We are at a turning point in regenerative medicine as the first wave of treatments have obtained FDA approval. But at the same time as we see the advance of scientifically rigorous research and regulated products we are also witnessing the continued proliferation of “unproven treatments.” This dueling environment can be overwhelming and distracting to individuals and families trying to manage life-threatening diseases.

How does a patient navigate this environment and get trusted and reliable information to help sort through their options?

CIRM teamed up with the CURA Foundation to organize a roundtable discussion intended to answer this question. The conversation included thought leaders involved in patient advocacy, therapy research and development, public policy and research funding. The roundtable was divided into three segments designed to discuss:

  1. Examples of state-of-the-art patient navigation systems,
  2. Policy, research and infrastructure needs required to expand navigation systems, and
  3. Communication needs for engaging patients and the broader community.

Examples of Navigation Systems:

This session was framed around the observation that patients often do not get the best medicines or treatments available for their condition. For example, in the area of cancer care there is evidence that the top 25% of cancers are not being treated optimally. Historic barriers to optimal treatment include cost pressures that may block access to treatments, lack of knowledge about the available treatments or the absence of experts in the location where the patient is being treated.  Much of the session focused on how these barriers are being overcome by partnerships between health care provides, employers and patients.

For example, new technologies such as DNA sequencing and other cell-based markers enable better diagnosis of a patient’s underlying disease. This information can be collected by a community hospital and shared with experts who work with the treating doctor to consider the best options for the patient. If patients need to access a specialty center for treatment, there are new models for the delivery of such care. Emphasis is placed on building a relationship with the patient and their family by surrounding them with a team that can address any questions that arise. The model of patient-centered care is being embraced by employers who are purchasing suites of services for their employees.

Patient advocacy groups have also supported efforts to get the best information about the patients’ underlying disease. Advocacy organizations have been building tools to connect patients with researchers with the aim of allowing secure and responsible sharing of medical information to drive the patient-centered development of new treatments. In a related initiative, the American Society of Hematology is creating a data hub for clinical trials for sickle cell disease. Collectively, these efforts are designed to accelerate new treatments by allowing critical data to be shared among researchers.

Essential Policy Infrastructure for Regenerative Medicine:

Session two dovetailed nicely with first discussion. There was continued emphasis on the need for additional evidence (data) to demonstrate that regenerative medicine treatments are having a significant effect on the patient’s disease. Various speakers echoed the need for patients in clinical trials to work with researchers to determine the benefits of treatments. Success stories with gene therapies in blood diseases were cited as proof of concept where treatments being evaluated in clinical trials are demonstrating a significant and sustained impact on diseases. Evidence of benefit is needed by both regulatory bodies that approve the treatments, such as the FDA, and by public and private payers / insurers that pay for treatments and patients that need to know the best option for their particular disease.

In addition, various speakers cited the continued proliferation of “unproven treatments” being marketed by for-profit centers. There was broad concern that the promotion of treatment where there is no evidence of effectiveness will mislead some patients and potentially harm the scientifically rigorous development of new treatments. Particularly for “stem cell” treatments, there was a desire to develop evaluation criteria that are clear and transparent to allow legitimate treatments to be distinguished from those with no evidence of effectiveness. One participant suggested there be a scorecard approach where specific treatments could be rated against specific indicators of safety, medical benefit and value in relation to alternative treatments. The idea would be to make this information widely available to patients, medical providers and the public to inform everything from medical decision making to advertising.

Communicating the Vision

The final session considered communication needs for the field of regenerative medicine. Patients and patient advocacy organizations described how they are using social media and other networking tools to share information and experiences in navigating their treatment options. Patient advocacy groups also described the challenges from providers of unproven treatments. In one case, a for profit “pop up” clinic had used the group’s videos in an attempt to legitimize their unproven treatment.

There was general consensus among the panelists that the field of regenerative medicine needs “trusted intermediaries” who can evaluate claims and help patients distinguish between high quality research and “snake oil”. These intermediaries should have the capacity to compile the most reliable evidence and utilize it to determine what options are available to patients. In addition, there needs to be shared decision making model where patients have the opportunity to explore options in an unbiased environment so they may make the best decision based on their specific needs and values.

Creating this kind of Navigation System will not be easy but the alternative is unacceptable. Too many vulnerable patients are being taken advantage of by the growing number of “predatory clinics” hawking expensive therapies that are both unproven and unapproved. We owe it to these patients to create a simple way for them to identify what are the most promising therapies, ones that have the highest chance of being both safe and effective. The roundtable discussion marked a starting point, bringing together many of the key players in the field, highlighting the key issues and beginning to identify possible solutions.

CIRM’s Alpha Stem Cell Clinics Given High Profile Role in Clinical Trials Network

Sue and Bill Gross Hall Photo by Hoang Xuan Pham/ UC Irvine

There are a growing number of predatory clinics in California and around the US, offering unproven stem cell therapies. For patients seeking a legitimate therapy it can often be hard finding a reliable clinic, one offering treatments based on the rigorous science required in a clinical trial sanctioned by the US Food and Drug Administration (FDA). That’s one of the reasons why the California Institute for Regenerative Medicine (CIRM) created the CIRM Alpha Stem Cell Clinic Network and we are delighted the clinics have now been chosen as a Core program of the American Society of Hematology (ASH) Sickle Cell Disease (SCD) Collaborative Trials Network. 

The Alpha Clinics are a network of top California medical centers that specialize in delivering stem cell clinical trials to patients. It consists of five leading medical centers throughout California: City of Hope, University of California (UC) San Diego, UC Irvine & UC Los Angeles, UC Davis and UC San Francisco.

The mission of the ASH Research Collaborative SCD Clinical Trials Network is to improve outcomes for individuals with Sickle Cell Disease by promoting innovation in therapy development and clinical trial research.

Like CIRM, the ASH Clinical Trials Network is a member of the National Heart, Lung and Blood Institute’s Cure Sickle Cell Initiative. This is a collaborative partnership to accelerate the development of genetic therapies to cure SCD within five to ten years.

“The key to finding a cure for this crippling disease, and finding it quickly, is to work together”, says Maria T. Millan, MD, President & CEO of CIRM. “That’s why we are delighted to be chosen as a core program for the ASH Sickle Cell Disease Clinical Trials Network. This partnership means we can share data and information about best practices to help us improve the quality of the research being done and the clinical care we can offer patients. We already have 23 clinical stage therapies in cell and gene therapy, including two clinical trials targeting SCD, so we feel we have a lot to bring to the partnership in terms of experience and expertise.”

Sickle Cell disease is a life-threatening blood disorder that affects 100,000 people, mostly African Americans, in the US. It is caused by a single genetic mutation that results in the production of “sickle” shaped red blood cells that can block blood vessels causing intense pain, recurrent hospitalization, multi-organ damage and strokes.    

According to Mark Walters, MD, Director of UCSF Benioff Children’s Hospital Oakland’s Blood and Marrow Transplantation program, ”the currently available drugs treat the symptoms of  sickle cell disease but are not a cure.

“We hear a lot about the moonshot for curing cancer, but a moonshot for curing sickle cell disease should also be possible. Sickle cell disease was the first genetic disease that was discovered, and wouldn’t it be great if it is also one of the first ones we can cure in everyone?”

It is hoped that creating this network of clinical trial sites across the US will better serve an historically under-served population.

  • Establishing links and educational materials across these sites can increase patient engagement and recruitment
  • Standardizing resources across the network can ensure efficiency and coordination
  • Improving the training of clinical research staff can promote patient safety and trust and increase research quality

The CIRM Alpha Clinics Network has a proven track record of creating a faster, more streamlined approach in running clinical trials. It has developed the tools and systems to simultaneously launch clinical trials at multiple sites; created model non-disclosure agreements to make it easier for clinical trial sponsors to sign up; created a system to enable one Institutional Review Board (IRB) to approve a trial to be carried out at multiple sites rather than requiring each site to have its own IRB approval; developed best practices to quickly share experience and expertise across the network; and set up a database of over 20 million Californians to improve patient recruitment.

An Executive Summary prepared for the Western States Sickle Cell Disease Clinical Trials Network said: “the ASCC provides a formidable clinical trial unit uniquely qualified to deliver the next generation of cell and gene therapy products for SCD.”

An off-the-shelf cancer killer

iPS Cell: Photo from the lab of Kathrin Plath at UCLA

One of the hottest areas in cancer research right now is the use of CAR-T treatments. These use the patient’s own re-engineered immune system cells to target and kill the tumor. But the thing that makes it so appealing – using the patient’s own cells – also makes it really complicated and expensive. Creating a custom-made therapy from each patient’s own cells takes time and costs a lot of money. But now a new approach could change that.

Fate Therapeutics has developed an off-the-shelf therapy (thanks to CIRM funding) that could, theoretically, be stored at hospitals and clinics around the country and used whenever it’s needed for anyone who needs it.

At this year’s meeting of the American Society of Hematology (ASH) Fate announced that the first patient treated with this new approach seems to be doing very well. The patient had acute myeloid leukemia and wasn’t responding to conventional treatments. However, following treatment with Fate’s FT516 the patient responded quickly and – according to STAT News’ Adam Feuerstein – was able to leave the hospital and spend Thanksgiving with his family.

Equally impressive is that 42 days after being treated with FT516, the man showed no signs of leukemia in either his bone marrow or blood.

FT516 is designed to provide a one-two combination attack on cancer. It’s made up of the wonderfully named natural killer (NK) cells, which are a critical part of our immune system defenses against cancer. These NK cells are created by using the iPSC process and have been genetically modified to express a protein that boosts their cancer-killing abilities.

Because these cells are manufactured they can, if effective, be produced in large numbers and stored for whenever needed. That would not only dramatically reduce costs but also make them more widely available when they are needed.

This is only one patient and the follow-up is still relatively short. Even so, the results are encouraging and certainly give hope that Fate is on to something big. We’ll be keeping track and let you know how things progress.

Four CIRM Funded Trials Release Results at 2019 ASH Meeting

With more than 17,000 members from nearly 100 countries, the American Society of Hematology (ASH) is an organization composed of clinicians and scientists around the world working to conquer various blood diseases. Currently, they are having their 61st Annual ASH Meeting to highlight some of the exciting work going on in the field. Four of our CIRM funded trials have released promising results at this conference and we wanted to take the opportunity to highlight them below.

Sangamo Therapeutics

Sangamo Therapeutics is conducting a CIRM-funded clinical trial for beta-thalassemia, a severe form of anemia caused by mutations in the hemoglobin gene. The therapy Sangamo is testing takes a patient’s own blood stem cells and, using a gene-editing technology called zinc finger nuclease (ZFN), provides a functional copy of the hemoglobin gene. These modified cells are then given back to the patient. The company announced preliminary results from their first three patients treated. in the clinical trials at the ASH 2019 Conference as well.

Some of the highlights are the following:

  • The first three patients experienced prompt hematopoietic reconstitution, meaning that their supply of blood stem cells was restored.
  • The first three patients experienced no clonal hematopoiesis, meaning that the blood stem cells did not create cells with mutations in the DNA
  • Additional study results are expected in late 2020 once enrollment is complete and all six patients have longer follow-up

You can read more detailed results regarding the first three patients in the press release.

Forty Seven, Inc.

In another CIRM funded trial, Forty Seven, Inc. is testing a treatment for myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). The treatment involves an antibody called magrolimab in combination with the chemotherapy drug azacitidine. Cancer cells express a signal that send a “don’t eat me” message to white blood cells that are part of the immune system designed to “eat” and destroy unhealthy cells. Magrolimab works by blocking the signal, enabling the body’s own immune system to detect these evasive cancer cells. The goal is to use both magrolimab and azacitidine to make the cancer stem cells vulnerable to being attacked and destroyed by the immune system.

Of the 46 patients evaluated, 24 patients had untreated higher-risk MDS and 22 patients had untreated AML. None of the patients were eligible for treatment with chemotherapy.

In higher-risk MDS, the overall response rate (ORR), which is the proportion of patients in a trial whose tumor is destroyed or significantly reduced by a treatment, was 92%.

Within this group of patients with an ORR, the following was observed:

  • 12 patients (50%) achieved a complete response (CR), meaning that they experienced a disappearance of all signs of cancer in response to treatment.
  • Two patients (8%) achieved hematologic (blood) improvement. 
  • Additionally, two patients (8%) achieved stable disease, meaning the cancer is neither increasing nor decreasing in extent or severity.

In untreated AML, the ORR was 64% and the following was observed within this group patients with an ORR:

  • Nine patients (41%) achieved a CR
  • Three patients (14%) achieved a CR with an incomplete blood count recovery (CRi)
  • One patient (5%) achieved a morphologic leukemia-free state (MLFS), which is defined as the disappearance of all cells with morphologic characteristics of leukemia, accompanied by bone marrow recovery, in response to treatment.
  • Seven patients (32%) achieved stable disease (SD)

The median time to response among MDS and AML patients treated with the combination was 1.9 months.

More details regarding these results are available via the news release.

Oncternal Therapeutics

Onceternal Therapeutics, which is conducting a CIRM-funded trial for a treatment for lymphoma and leukemia, presented results at the 2019 ASH Meeting. The treatment involves an antibody called cirmtuzumab (named after yours truly) being used with a cancer fighting drug called ibrutinib. The antibody recognizes and attaches to a protein on the surface of cancer stem cells. This attachment disables the protein, which slows the growth of the leukemia and makes it more vulnerable to anti-cancer drugs.

Some of the results presented are summarized as follows:

  • Twenty-nine of the 34 patients achieved a response, for an overall best objective response rate of 85%.
  • One patient achieved a complete response (CR) and remained in remission six months after completion of the trial and discontinuation of all anti-CLL therapy. In addition, three patients met radiographic and hematologic response criteria for Clinical CR.
  • Five patients had stable disease.
  • The total clinical benefit rate was 100%.
  • None of the patients died or saw their disease progress.
  • Patients achieved responses rapidly, with 68% of patients achieving a clinical response by three months on the combination therapy.
  • The rise in leukemic cell counts that is typically seen in the first six months with ibrutinib by itself was blunted with the addition of cirmtuzumab, and leukemic cell counts returned toward baseline and normal levels rapidly.

You can read more about these results in the official press release.

Rocket Pharmaceuticals

Last, but not least, Rocket Pharmaceuticals presented results at the 2019 ASH Conference related to a CIRM-funded trial for Leukocyte Adhesion Deficiency-I (LAD-I), a rare pediatric disease caused by a mutation in a specific gene that affects the body’s ability to combat infections. As a result, there is low expression of neutrophil (CD18). The company is testing a treatment that uses a patient’s own blood stem cells and inserts a functional version of the gene.  These modified stem cells are then reintroduced back into the patient. The goal is to establish functional immune cells, enabling the body to combat infections.  

Here are some of the highlights from the presentation:

  • Initial results from the first pediatric patient treated demonstrate early evidence of safety and potential effectiveness. 
  • The patient exhibited early signs of engraftment
  •  The patient also displayed visible improvement of multiple disease-related skin lesions after receiving therapy
  •  No safety issues related to administration have been identified

More detailed results on this trial are available via the news release.

World Sickle Cell Day: A View from the Front Line

June 19th is World Sickle Cell Day. Sickle cell disease is an inherited blood disorder that causes normally round red blood cells to take on an abnormal sickle shape, resulting in clogged arteries, severe pain, increased risk of stroke and reduced life expectancy. To mark the occasion we asked Nancy M. Rene to write a guest blog for us. Nancy is certainly qualified; she is the grandmother of a child with sickle cell disease, and the co-founder of Axis Advocacy, a non-profit advocating for those with sickle cell disease and their families.

Nancy ReneOn this World Sickle Cell Day, 2017, we can look back to the trailblazers in the fight against Sickle Cell Disease.  More than 40 years ago, the Black Panther Party established the People’s Free Medical Clinics in several cities across the country. One of the functions of these free clinics: to screen people for sickle cell disease and sickle cell trait. This life-saving screening began  in 1971.

Around that same time, President Richard Nixon allocated $10 million to begin the National Sickle Cell Anemia Control Act. This included counseling and screening, educational activities, and money for research.

In the early part of the twentieth century, most children with sickle cell died before their fifth birthday. With newborn screening available nationwide, the use of penicillin to prevent common infections, and the finding that hydroxyurea was useful in fighting the disease, life expectancy began to improve.

For much of the twentieth century, people with sickle cell disease felt that they were fighting the fight alone, knowledgeable doctors were scarce and insurance was often denied.

Making progress

As we moved into the twenty-first century, patients and families found they had some powerful allies. The National Institutes of Health (NIH), Centers for Disease Control and Prevention (CDC) and the Food and Drug Administration (FDA) joined the battle.  In 2016 the NIH held its tenth annual international conference on sickle cell disease that featured speakers from all over the world.  Participants were able to learn about best practices in Europe, Africa, India, and South America.

Sickle Cell centers at Howard University, the Foundation for Sickle Cell Disease Research, and other major universities across the country are pointing the way to the best that medicine has to offer.

Last year, the prestigious American Society of Hematology (ASH) launched an initiative to improve understanding and treatment of sickle cell disease.  Their four-point plan includes education, training, advocacy, and expanding its global reach.

Just last month, May 2017, the FDA looked at Endari, developed by Emmaus Medical in Torrance, California.  It is the first drug specifically developed for sickle cell disease to go through the FDA’s approval process. We should have a decision on whether or not the drug goes to market in July.

The progress that had been made up to the beginning of the twenty-first century was basically about alleviating the symptoms of the disease: the sickling, the organ damage and the pervasive anemia. But a cure was still elusive.

But in 2004, California’s Stem Cell Agency, CIRM, was created and it was as if the gates had opened.

Researchers had a new source of funding to enable  them to work on Sickle Cell Disease and many other chronic debilitating diseases at the cellular level. Scientists like Donald Kohn at UCLA, were able to research gene editing and find ways to use autologous bone marrow transplants to actually cure people with sickle cell. While some children with sickle cell have been cured with traditional bone marrow transplants, these transplants must come from a matched donor, and for most patients, a matched donor is simply not available. CIRM has provided the support needed so that researchers are closing in on the cure. They are able to share strategies with doctors and researchers throughout the world

And finally, support from the federal government came with the passage of the Affordable Care Act and adequate funding for the NIH, CDC, the Health Resources and Services Administration (HRSA), and FDA.

Going backwards

And yet, here we are, World Sickle Cell Day, 2017.

Will this be a case of one step forward two steps back?

Are we really going back to the time when people with Sickle Cell Disease could not get health insurance because sickle cell is a pre-existing condition, to the time when there was little money and no interest in research or professional training, to a time when patients and their families were fighting this fight alone?

For all of those with chronic disease, it’s as if we are living a very bad dream.

Time to wake up

For me, I want to wake up from that dream.  I want to look forward to a future where patients and families, where Joseph and Tiffany and Marissa and Ken and Marcus and all the others, will no longer have to worry about getting well-informed, professional treatment for their disease.

Where patients will no longer fear going to the Emergency Room

Where doctors and researchers have the funding they need to support them in their work toward the cure,

Where all children, those here in the United States along with those in Africa, India, and South America, will have access to treatments that can free them from pain and organ damage of sickle cell disease.

And where all people with this disease can be cured.