It’s not often you get a chance to hear some of the brightest minds around talk about their stem cell research and what it could mean for you, me and everyone else. That’s why we’re delighted to be bringing some of the sharpest tools in the stem cell shed together in one – virtual – place for our CIRM 2020 Grantee Meeting.
The event is Monday September 14th and Tuesday September 15th. It’s open to anyone who wants to attend and, of course, it’s all being held online so you can watch from the comfort of your own living room, or garden, or wherever you like. And, of course, it’s free.
Dr. Daniela Bota, UC Irvine
The list of speakers is a Who’s Who of researchers that CIRM has funded and who also happen to be among the leaders in the field. Not surprising as California is a global center for regenerative medicine. And you will of course be able to post questions for them to answer.
Dr. Deepak Srivastava, Gladstone Institutes
The key speakers include:
Larry Goldstein: the founder and director of the UCSD Stem Cell Program talking about Alzheimer’s research
Irv Weissman: Stanford University talking about anti-cancer therapies
Daniela Bota: UC Irvine talking about COVID-19 research
Deepak Srivastava: Gladsone Institutes, talking about heart stem cells
Other topics include the latest stem cell approaches to COVID-19, spinal cord injury, blindness, Parkinson’s disease, immune disorders, spina bifida and other pediatric disorders.
You can choose one topic or come both days for all the sessions. To see the agenda for each day click here. Just one side note, this is still a work in progress so some of the sessions have not been finalized yet.
And when you are ready to register go to our Eventbrite page. It’s simple, it’s fast and it will guarantee you’ll be able to be part of this event.
If someone told you they were working on lungs in a dish you might be forgiven for thinking that’s the worst idea for a new recipe you have ever heard of. But in the case of Dr. Evan Snyder and his team at Sanford Burnham Prebys Medical Discovery Institute it could be a recipe for a powerful new tool against COVID-19.
Earlier this month the CIRM Board approved almost $250,000 for Dr. Snyder and his team to use human induced pluripotent stem cells (hiPSCs), a type of stem cell that can be created by reprogramming skin or blood cells, to create any other cell in the body, including lung cells.
These cells will then be engineered to become 3D lung organoids or “mini lungs in a dish”. The importance of this is that these cells resemble human lungs in a way animal models do not. They have the same kinds of cells, structures and even blood vessels that lungs do.
These cells will then be infected with the coronavirus and then be used to test two drugs to see if those drugs are effective against the virus.
In a news release Dr. Snyder says these cells have some big advantages over animal models, the normal method for early stage testing of new therapies.
“Mini lungs will also help us answer why some people with COVID-19 fare worse than others. Because they are made from hiPSCs, which come from patients and retain most of the characteristics of those patients, we can make ‘patient-specific’ mini lungs. We can compare the drug responses of mini lungs created from Caucasian, African American, and Latino men and women, as well as patients with a reduced capacity to fight infection to make sure that therapies work effectively in all patients. If not, we can adjust the dose or drug regime to help make the treatment more effective.
“We can also use the mini lungs experimentally to evaluate the effects of environmental toxins that come from cigarette smoking or vaping to make sure the drugs are still effective; and emulate the microenvironmental conditions in the lungs of patients with co-morbidities such as diabetes, and heart or kidney disease.”
To date CIRM has funded 15 projects targeting COVID-19, including three that are in clinical trials.
Dr. Steven Dowdy (left), Dr. Evan Snyder (center), and Dr. John Zaia (right)
This past Friday the governing Board of the California Institute for Regenerative Medicine (CIRM) approved two additional discovery research projects as part of the $5 million in emergency funding for COVID-19 related projects. This brings the number of COVID-19 projects CIRM is supporting to 15, including three clinical trials.
The Board awarded $249,999 to Dr. Evan Snyder at the Sanford Burnham Prebys Medical Discovery Institute. The study will use induced pluripotent stem cells (iPSCs), a type of stem cell that can be created by reprogramming skin or blood cells, to create lung organoids. These lung organoids will then be infected with the novel coronavirus in order to test two drug candidates for treatment of the virus. The iPSCs and the subsequent lung organoids created will reflect diversity by including male and female patients from the Caucasian, African-American, and Latinx population.
This award is part of CIRM’s Quest Awards Program (DISC2), which promotes promising new technologies that could be translated to enable broad use and improve patient care.
The Board also awarded $150,000 to Dr. Steven Dowdy at UC San Diego for development of another potential treatment for COVID-19.
Dr. Dowdy and his team are working on developing a new, and hopefully more effective, way of delivering a genetic medicine, called siRNA, into the lungs of infected patients. In the past trying to do this proved problematic as the siRNA did not reach the appropriate compartment in the cell to become effective. However, the team will use an iPSC lung model to help them identify ways past this barrier so the siRNA can attack the virus and stop it replicating and spreading throughout the lungs.
This award is part of CIRM’s Inception Awards Program (DISC1), which supports transformational ideas that require the generation of additional data.
A supplemental award of $250,000 was approved for Dr. John Zaia at City of Hope to continue support of a CIRM funded clinical study that is using convalescent plasma to treat COVID-19 patients. The team recently launched a website to enroll patients, recruit plasma donors, and help physicians enroll their patients.
“The use of induced pluripotent stem cells has expanded the potential for personalized medicine,” says Dr. Maria T. Millan, the President & CEO of CIRM. “Using patient derived cells has enabled researchers to develop lung organoids and lung specific cells to test numerous COVID-19 therapies.”
You know you are working with some of the finest scientific minds in the world when they get elected to the prestigious National Academy of Sciences (NAS). It’s the science equivalent of the baseball, football or even Rock and Roll Hall of Fame. People only get in if their peers vote them in. It’s considered one of the highest honors in science, one earned over many decades of hard work. And when it comes to hard work there are few people who work harder than U.C. San Diego’s Dr. Lawrence Goldstein, one of the newly elected members of the NAS.
For more than 25 years Larry’s work has targeted the brain and, in particular, Alzheimer’s disease and amyotrophic lateral sclerosis (ALS) better known as Lou Gehrig’s disease.
In 2012 his team was the first to create stem cell models for two different forms of Alzheimer’s, the hereditary and the sporadic forms. This gave researchers a new way of studying the disease, helping them better understand what causes it and looking at new ways of treating it.
His work has also helped develop a deeper understanding of the genetics of Alzheimer’s and to identify possible new targets for stem cell and other therapies.
Larry was typically modest when he heard the news, saying: “I have been very fortunate to have wonderful graduate students and fellows who have accomplished a great deal of excellent research. It is a great honor for me and for all of my past students and fellows – I am obviously delighted and hope to contribute to the important work of the National Academy of Sciences.”
But Larry doesn’t intend to rest on his laurels. He says he still has a lot of work to do, including “raising funding to test a new drug approach for Alzheimer’s disease that we’ve developed with CIRM support.”
Jennifer Briggs Braswell, PhD, worked with Larry at UCSD from 2005 to 2018. She says Larry’s election to the NAS is well deserved:
“His high quality publications, the pertinence of his studies in neurodegeneration to our current problems, and his constant, unwavering devotion to the next generation of scientists is matched only by his dedication to improving public understanding of science to motivate social, political, and financial support.
“He has been for me a supportive mentor, expressing enthusiastic belief in the likely success of my good ideas and delivering critique with kindness and sympathy. He continues to inspire me, our colleagues at UCSD and other communities, advocate publicly for the importance of science, and work tirelessly on solutions for neurodegenerative disorders.”
Dr. Tariq Rana (left) and Dr. Jeremy Rich (right) both lead independent teams at UC San Diego that identified a molecule, αvβ5 integrin, as the Zika virus’ key to getting into brain stem cells
Zika virus is caused by a virus transmitted by Aedes mosquitoes. People usually develop mild symptoms that include fever, rash, and muscle and joint pain. However, Zika virus infection during pregnancy can lead to much more serious problems. The virus causes infants to be born with microcephaly, a condition in which the brain does not develop properly, resulting in an abnormally small head. In 2015-2016, the rapid spread of the virus was observed in Latin America and the Caribbean, increasing the urgency of understanding how the virus affected brain development.
Working independently, Dr. Tariq Rana and Dr. Jeremy Rich from UC San Diego identified the same molecule, αvβ5 integrin, as the Zika virus’ key to entering brain stem cells. The two studies, with the aid of CIRM funding, discovered how to take advantage of the molecule in order to block the Zika virus from infecting cells. In addition to this, they were able to turn it into something useful: a way to destroy brain cancer stem cells.
In the first study, Dr. Rana and his team used CRISPR gene editing on brain cancer stem cells to delete individual genes, which was done to see which genes are required for the Zika virus to enter the cells. They discovered that the gene responsible for αvβ5 integrin also enabled the Zika virus.
In a press release by UC San Diego, Dr. Rana elaborates on the importance of his findings.
“…we found Zika uses αvβ5, which is unique. When we further examined αvβ5 expression in brain, it made perfect sense because αvβ5 is the only integrin member enriched in neural stem cells, which Zika preferentially infects. Therefore, we believe that αvβ5 is the key contributor to Zika’s ability to infect brain cells.”
In the second study, Dr. Rich and his team use an antibody to block αvβ5 integrin and found that it prevented the virus from infecting brain cancer stem cells and normal brain stem cells. The team then went on to block αvβ5 integrin in a mouse model for glioblastoma, an aggressive type of brain tumor, by using an antibody or deactivating the gene responsible for the molecule. Both approaches blocked Zika virus infection and allowed the treated mice to live longer than untreated mice.
Dr. Rich then partnered with Dr. Alysson Muotri at UC San Diego to transplant glioblastoma tumors into laboratory “mini-brains” that can be used for drug discovery. The researchers discovered that Zika virus selectively eliminates glioblastoma stem cells from the mini-brains. Additionally, blocking αvβ5 integrin reversed that anti-cancer activity, further demonstrating the molecule’s crucial role in Zika virus’ ability to destroy cells.
In the same UC San Diego press release, Dr. Rich talks about how understanding Zika virus could help in treating glioblastoma.
“While we would likely need to modify the normal Zika virus to make it safer to treat brain tumors, we may also be able to take advantage of the mechanisms the virus uses to destroy cells to improve the way we treat glioblastoma.”
Dr. Rana’s full study was published in Cell Reports and Dr. Rich’s full study was published in Cell Stem Cell.
On December 12th we hosted our latest ‘Facebook Live: Ask the Stem Cell Team’ event. This time around we really did mean team. We had a host of our Science Officers answering questions from friends and supporters of CIRM. We got a lot of questions and didn’t have enough time to address them all. So here’s answers to all the questions.
What are the obstacles to using partial cellular reprogramming to return people’s entire bodies to a youthful state.Paul Hartman. San Leandro, California
Dr. Kelly Shepard
Dr. Kelly Shepard: Certainly, scientists have observed that various manipulations of cells, including reprogramming, partial reprogramming, de-differentiation and trans-differentiation, can restore or change properties of cells, and in some cases, these changes can reflect a more “youthful” state, such as having longer telomeres, better proliferative capacity, etc. However, some of these same rejuvenating properties, outside of their normal context, could be harmful or deadly, for example if a cell began to grow and divide when or where it shouldn’t, similar to cancer. For this reason, I believe the biggest obstacles to making this approach a reality are twofold: 1) our current, limited understanding of the nature of partially reprogrammed cells; and 2) our inability to control the fate of those cells that have been partially reprogrammed, especially if they are inside a living organism. Despite the challenges, I think there will be step wise advances where these types of approaches will be applied, starting with specific tissues. For example, CIRM has recently funded an approach that uses reprogramming to make “rejuvenated” versions of T cells for fighting lung cancer. There is also a lot of interest in using such approaches to restore the reparative capacity of aged muscle. Perhaps some successes in these more limited areas will be the basis for expanding to a broader use.
************************************
STROKE
What’s going on with Stanford’s stem cell trials for stroke? I remember the first trial went really well In 2016 have not heard anything about since? Elvis Arnold
Dr. Lila Collins
Dr. Lila Collins: Hi Elvis, this is an evolving story. I believe you are referring to SanBio’s phase 1/2a stroke trial, for which Stanford was a site. This trial looked at the safety and feasibility of SanBio’s donor or allogeneic stem cell product in chronic stroke patients who still had motor deficits from their strokes, even after completing physical therapy when natural recovery has stabilized. As you note, some of the treated subjects had promising motor recoveries.
SanBio has since completed a larger, randomized phase 2b trial in stroke, and they have released the high-level results in a press release. While the trial did not meet its primary endpoint of improving motor deficits in chronic stroke, SanBio conducted a very similar randomized trial in patients with stable motor deficits from chronic traumatic brain injury (TBI). In this trial, SanBio saw positive results on motor recovery with their product. In fact, this product is planned to move towards a conditional approval in Japan and has achieved expedited regulatory status in the US, termed RMAT, in TBI which means it could be available more quickly to patients if all goes well. SanBio plans to continue to investigate their product in stroke, so I would stay tuned as the work unfolds.
Also, since you mentioned Stanford, I should note that Dr Gary Steinberg, who was a clinical investigator in the SanBio trial you mentioned, will soon be conducting a trial with a different product that he is developing, neural progenitor cells, in chronic stroke. The therapy looks promising in preclinical models and we are hopeful it will perform well for patients in the clinic.
*****************************
I am a stroke survivor will stem cell treatment able to restore my motor skills?Ruperto
Dr. Lila Collins:
Hi Ruperto. Restoring motor loss after stroke is a very active area of research. I’ll touch upon a few ongoing stem cell trials. I’d just like to please advise that you watch my colleague’s comments on stem cell clinics (these can be found towards the end of the blog) to be sure that any clinical research in which you participate is as safe as possible and regulated by FDA.
Back to stroke, I mentioned SanBio’s ongoing work to address motor skill loss in chronic stroke earlier. UK based Reneuron is also conducting a phase 2 trial, using a neural progenitor cell as a candidate therapy to help recover persistent motor disability after stroke (chronic). Dr Gary Steinberg at Stanford is also planning to conduct a clinical trial of a human embryonic stem cell-derived neuronal progenitor cell in stroke.
There is also promising work being sponsored by Athersys in acute stroke. Athersys published results from their randomized, double blinded placebo controlled Ph2 trial of their Multistem product in patients who had suffered a stroke within 24-48 hours. After intravenous delivery, the cells improved a composite measure of stroke recovery, including motor recovery. Rather than acting directly on the brain, Multistem seems to work by traveling to the spleen and reducing the inflammatory response to a stroke that can make the injury worse.
Athersys is currently recruiting a phase 3 trial of its Multistem product in acute stroke (within 1.5 days of the stroke). The trial has an accelerated FDA designation, called RMAT and a special protocol assessment. This means that if the trial is conducted as planned and it reaches the results agreed to with the FDA, the therapy could be cleared for marketing. Results from this trial should be available in about two years.
********************************
Questions from several hemorrhagic stroke survivors who say most clinical trials are for people with ischemic strokes. Could stem cells help hemorrhagic stroke patients as well?
Dr. Lila Collins:
Regarding hemorrhagic stroke, you are correct the bulk of cell therapies for stroke target ischemic stroke, perhaps because this accounts for the vast bulk of strokes, about 85%.
That said, hemorrhagic strokes are not rare and tend to be more deadly. These strokes are caused by bleeding into or around the brain which damages neurons. They can even increase pressure in the skull causing further damage. Because of this the immediate steps treating these strokes are aimed at addressing the initial bleeding insult and the blood in the brain.
While most therapies in development target ischemic stroke, successful therapies developed to repair neuronal damage or even some day replace lost neurons, could be beneficial after hemorrhagic stroke as well.
I had an Ischemic stroke in 2014, and my vision was also affected. Can stem cells possibly help with my vision issues. James Russell
Dr. Lila Collins:
Hi James. Vision loss from stroke is complex and the type of loss depends upon where the stroke occurred (in the actual eye, the optic nerve or to the other parts of the brain controlling they eye or interpreting vision). The results could be:
Visual loss from damage to the retina
You could have a normal eye with damage to the area of the brain that controls the eye’s movement
You could have damage to the part of the brain that interprets vision.
You can see that to address these various issues, we’d need different cell replacement approaches to repair the retina or the parts of the brain that were damaged.
Replacing lost neurons is an active effort that at the moment is still in the research stages. As you can imagine, this is complex because the neurons have to make just the right connections to be useful.
*****************************
VISION
Is there any stem cell therapy for optical nerve damage? Deanna Rice
Dr. Ingrid Caras
Dr. Ingrid Caras: There is currently no proven stem cell therapy to treat optical nerve damage, even though there are shady stem cell clinics offering treatments. However, there are some encouraging early gene therapy studies in mice using a virus called AAV to deliver growth factors that trigger regeneration of the damaged nerve. These studies suggest that it may be possible to restore at least some visual function in people blinded by optic nerve damage from glaucoma
****************************
I read an article about ReNeuron’s retinitis pigmentosa clinical trial update. In the article, it states: “The company’s treatment is a subretinal injection of human retinal progenitors — cells which have almost fully developed into photoreceptors, the light-sensing retinal cells that make vision possible.” My question is: If they can inject hRPC, why not fully developed photoreceptors?Leonard
Dr. Kelly Shepard: There is evidence from other studies, including from other tissue types such as blood, pancreas, heart and liver, that fully developed (mature) cell types tend not to engraft as well upon transplantation, that is the cells do not establish themselves and survive long term in their new environment. In contrast, it has been observed that cells in a slightly less “mature” state, such as those in the progenitor stage, are much more likely to establish themselves in a tissue, and then differentiate into more mature cell types over time. This question gets at the crux of a key issue for many new therapies, i.e. what is the best cell type to use, and the best timing to use it.
****************************
My question for the “Ask the Stem Cell Team” event is: When will jCyte publish their Phase IIb clinical trial results. Chris Allen
Dr. Ingrid Caras: The results will be available sometime in 2020.
*****************************
I understand the hRPC cells are primarily neurotropic (rescue/halt cell death); however, the literature also says hRPC can become new photoreceptors. My questions are:Approximately what percentage develop into functioning photoreceptors? And what percentage of the injected hRPC are currently surviving?Leonard Furber, an RP Patient
Dr. Kelly Shepard: While we can address these questions in the lab and in animal models, until there is a clinical trial, it is not possible to truly recreate the environment and stresses that the cells will undergo once they are transplanted into a human, into the site where they are expected to survive and function. Thus, the true answer to this question may not be known until after clinical trials are performed and the results can be evaluated. Even then, it is not always possible to monitor the fate of cells after transplantation without removing tissues to analyze (which may not be feasible), or without being able to transplant labeled cells that can be readily traced.
Dr. Ingrid Caras – Although the cells have been shown to be capable of developing into photoreceptors, we don’t know if this actually happens when the cells are injected into a patient’s eye. The data so far suggest that the cells work predominantly by secreting growth factors that rescue damaged retinal cells or even reverse the damage. So one possible outcome is that the cells slow or prevent further deterioration of vision. But an additional possibility is that damaged retinal cells that are still alive but are not functioning properly may become healthy and functional again which could result in an improvement in vision.
**********************************
DIABETES
What advances have been made using stem cells for the treatment of Type 2 Diabetes?Mary Rizzo
Dr. Ross Okamura
Dr. Ross Okamura: Type 2 Diabetes (T2D) is a disease where the body is unable to maintain normal glucose levels due to either resistance to insulin-regulated control of blood sugar or insufficient insulin production from pancreatic beta cells. The onset of disease has been associated with lifestyle influenced factors including body mass, stress, sleep apnea and physical activity, but it also appears to have a genetic component based upon its higher prevalence in certain populations.
Type 1 Diabetes (T1D) differs from T2D in that in T1D patients the pancreatic beta cells have been destroyed by the body’s immune system and the requirement for insulin therapy is absolute upon disease onset rather than gradually developing over time as in many T2D cases. Currently the only curative approach to alleviate the heavy burden of disease management in T1D has been donor pancreas or islet transplantation. However, the supply of donor tissue is small relative to the number of diabetic patients. Donor islet and pancreas transplants also require immune suppressive drugs to prevent allogenic immune rejection and the use of these drugs carry additional health concerns. However, for some patients with T1D, especially those who may develop potentially fatal hypoglycemia, immune suppression is worth the risk.
To address the issue of supply, there has been significant activity in stem cell research to produce insulin secreting beta cells from pluripotent stem cells and recent clinical data from Viacyte’s CIRM funded trial indicates that implanted allogeneic human stem cell derived cells in T1D patients can produce circulating c-peptide, a biomarker for insulin. While the trial is not designed specifically to cure insulin-dependent T2D patients, the ability to produce and successfully engraft stem cell-derived beta cells would be able to help all insulin-dependent diabetic patients.
It’s also worth noting that there is a sound scientific reason to clinically test a patient-derived pluripotent stem cell-based insulin-producing cells in insulin-dependent T2D diabetic patients; the cells in this case could be evaluated for their ability to cure diabetes in the absence of needing to prevent both allogeneic and autoimmune responses.
***********************************
SPINAL CORD INJURY
Is there any news on clinical trials for spinal cord injury? Le Ly
Kevin McCormack: The clinical trial CIRM was funding, with Asterias (now part of a bigger company called Lineage Cell Therapeutics, is now completed and the results were quite encouraging. In a news release from November of 2019 Brian Culley, CEO of Lineage Cell Therapeutics, described the results this way.
“We remain extremely excited about the potential for OPC1 (the name of the therapy used) to provide enhanced motor recovery to patients with spinal cord injuries. We are not aware of any other investigative therapy for SCI (spinal cord injury) which has reported as encouraging clinical outcomes as OPC1, particularly with continued improvement beyond 1 year. Overall gains in motor function for the population assessed to date have continued, with Year 2 assessments measuring the same or higher than at Year 1. For example, 5 out of 6 Cohort 2 patients have recovered two or more motor levels on at least one side as of their Year 2 visit whereas 4 of 6 patients in this group had recovered two motor levels as of their Year 1 visit. To put these improvements into perspective, a one motor level gain means the ability to move one’s arm, which contributes to the ability to feed and clothe oneself or lift and transfer oneself from a wheelchair. These are tremendously meaningful improvements to quality of life and independence. Just as importantly, the overall safety of OPC1 has remained excellent and has been maintained 2 years following administration, as measured by MRI’s in patients who have had their Year 2 follow-up visits to date. We look forward to providing further updates on clinical data from SCiStar as patients continue to come in for their scheduled follow up visits.”
Lineage Cell Therapeutics plans to meet with the FDA in 2020 to discuss possible next steps for this therapy.
In the meantime the only other clinical trial I know that is still recruiting is one run by a company called Neuralstem. Here is a link to information about that trial on the www.clinicaltrials.gov website.
*********************************
ALS
Now that the Brainstorm ALS trial is finished looking for new patients do you have any idea how it’s going and when can we expect to see results? Angela Harrison Johnson
Dr. Ingrid Caras: The treated patients have to be followed for a period of time to assess how the therapy is working and then the data will need to be analyzed. So we will not expect to see the results probably for another year or two.
***********************************
AUTISM
Are there treatments for autism or fragile x using stem cells? Magda Sedarous
Dr. Kelly Shepard: Autism and disorders on the autism spectrum represent a collection of many different disorders that share some common features, yet have different causes and manifestations, much of which we still do not understand. Knowing the origin of a disorder and how it affects cells and systems is the first step to developing new therapies. CIRM held a workshop on Autism in 2009 to brainstorm potential ways that stem cell research could have an impact. A major recommendation was to exploit stem cells and new technological advances to create cells and tissues, such as neurons, in the lab from autistic individuals that could then be studied in great detail. CIRM followed this recommendation and funded several early-stage awards to investigate the basis of autism, including Rett Syndrome, Fragile X, Timothy Syndrome, and other spectrum disorders. While these newer investigations have not yet led to therapies that can be tested in humans, this remains an active area of investigation. Outside of CIRM funding, we are aware of more mature studies exploring the effects of umbilical cord blood or other specific stem cell types in treating autism, such as an ongoing clinical trial conducted at Duke University.
**********************************
PARKINSON’S DISEASE
What is happening with Parkinson’s research? Hanifa Gaphoor
Dr. Kent Fitzgerald
Dr. Kent Fitzgerald: Parkinson’s disease certainly has a significant amount of ongoing work in the regenerative medicine and stem cell research.
The nature of cell loss in the brain, specifically the dopaminergic cells responsible for regulating the movement, has long been considered a good candidate for cell replacement therapy.
This is largely due to the hypothesis that restoring function to these cells would reverse Parkinson’s symptoms. This makes a lot of sense as front line therapy for the disease for many years has been dopamine replacement through L-dopa pills etc. Unfortunately, over time replacing dopamine through a pill loses its benefit, whereas replacing or fixing the cells themselves should be a more permanent fix.
Because a specific population of cells in one part of the brain are lost in the disease, multiple labs and clinicians have sought to replace or augment these cells by transplantation of “new” functional cells able to restore function to the area an theoretically restore voluntary motor control to patients with Parkinson’s disease.
Early clinical research showed some promise, however also yielded mixed results, using fetal tissue transplanted into the brains of Parkinson’s patients. As it turns out, the cell types required to restore movement and avoid side effects are somewhat nuanced. The field has moved away from fetal tissue and is currently pursuing the use of multiple stem cell types that are driven to what is believed to be the correct subtype of cell to repopulate the lost cells in the patient.
One project CIRM sponsored in this area with Jeanne Loring sought to develop a cell replacement therapy using stem cells from the patients themselves that have been reprogrammed into the kinds of cell damaged by Parkinson’s. This type of approach may ultimately avoid issues with the cells avoiding rejection by the immune system as can be seen with other types of transplants (i.e. liver, kidney, heart etc).
Still, others are using cutting edge gene therapy technology, like the clinical phase project CIRM is sponsoring with Krystof Bankiewicz to investigate the delivery of a gene (GDNF) to the brain that may help to restore the activity of neurons in the Parkinson’s brain that are no longer working as they should.
The bulk of the work in the field of PD at the present remains centered on replacing or restoring the dopamine producing population of cells in the brain that are affected in disease.
********************************
HUNTINGTON’S DISEASE
Any plans for Huntington’s?Nikhat Kuchiki
Dr. Lisa Kadyk
Dr. Lisa Kadyk: The good news is that there are now several new therapeutic approaches to Huntington’s Disease that are at various stages of preclinical and clinical development, including some that are CIRM funded. One CIRM-funded program led by Dr. Leslie Thompson at UC Irvine is developing a cell-based therapeutic that consists of neural stem cells that have been manufactured from embryonic stem cells. When these cells are injected into the brain of a mouse that has a Huntington’s Disease mutation, the cells engraft and begin to differentiate into new neurons. Improvements are seen in the behavioral and electrophysiological deficits in these mutant mice, suggesting that similar improvements might be seen in people with the disease. Currently, CIRM is funding Dr. Thompson and her team to carry out rigorous safety studies in animals using these cells, in preparation for submitting an application to the FDA to test the therapy in human patients in a clinical trial.
There are other, non-cell-based therapies also being tested in clinical trials now, using anti-sense oligonucleotides (Ionis, Takeda) to lower the expression of the Huntington protein. Another HTT-lowering approach is similar – but uses miRNAs to lower HTT levels (UniQure,Voyager)
******************************
TRAUMATIC BRAIN INJURY (TBI)
My 2.5 year old son recently suffered a hypoxic brain injury resulting in motor and speech disabilities. There are several clinical trials underway for TBI in adults. My questions are:
Will the results be scalable to pediatric use and how long do you think it would take before it is available to children?
I’m wondering why the current trials have chosen to go the route of intracranial injections as opposed to something slightly less invasive like an intrathecal injection?
Is there a time window period in which stem cells should be administered by, after which the administration is deemed not effective?
Dr. Kelly Shepard: TBI and other injuries of the nervous system are characterized by a lot of inflammation at the time of injury, which is thought to interfere with the healing process- and thus some approaches are intended to be delivered after that inflammation subsides. However, we are aware of approaches that intend to deliver a therapy to a chronic injury, or one that has occurred previously. Thus, the answer to this question may depend on how the intended therapy is supposed to work. For example, is the idea to grow new neurons, or is it to promote the survival of neurons of other cells that were spared by the injury? Is the therapy intended to address a specific symptom, such as seizures? Is the therapy intended to “fill a gap” left behind after inflammation subsides, which might not restore all function but might ameliorate certain symptoms.? There is still a lot we don’t understand about the brain and the highly sophisticated network of connections that cannot be reversed by only replacing neurons, or only reducing inflammation, etc. However, if trials are well designed, they should yield useful information even if the therapy is not as effective as hoped, and this information will pave the way to newer approaches and our technology and understanding evolves.
********************************
We have had a doctor recommending administering just the growth factors derived from MSC stem cells. Does the science work that way? Is it possible to isolate the growth factors and boost the endogenous growth factors by injecting allogenic growth factors?
Dr. Stephen Lin
Dr. Stephen Lin: Several groups have published studies on the therapeutic effects in non-human animal models of using nutrient media from MSC cultures that contain secreted factors, or extracellular vesicles from cells called exosomes that carry protein or nucleic acid factors. Scientifically it is possible to isolate the factors that are responsible for the therapeutic effect, although to date no specific factor or combination of factors have been identified to mimic the effects of the undefined mixtures in the media and exosomes. At present no regulatory approved clinical therapy has been developed using this approach.
************************************
PREDATORY STEM CELL CLINICS
What practical measures are being taken to address unethical practitioners whose bad surgeries are giving stem cell advances a bad reputation and are making forward research difficult?Kathy Jean Schultz
Dr. Geoff Lomax
Dr. Geoff Lomax: Terrific question! I have been doing quite a bit research into the history of this issue of unethical practitioners and I found an 1842 reference to “quack medicines.” Clearly this is nothing new. In that day, the author appealed to make society “acquainted with the facts.”
In California, we have taken steps to (1) acquaint patients with the facts about stem cell treatments and (2) advance FDA authorized treatments for unmet medical needs.
First, CIRM work with Senator Hernandez in 2017 to write a law the requires provides to disclose to patient that a stem cell therapy has not been approved by the Food and Drug administration.
We continue to work with the State Legislature and Medical Board of California to build on policies that require accurate disclosure of the facts to patients.
Second, our clinical trial network the — Alpha Stem Cell Clinics – have supported over 100 FDA-authorized clinical trials to advance responsible clinical research for unmet medical needs.
*****************************************
I’m curious if adipose stem cell being used at clinics at various places in the country is helpful or beneficial?Cheri Hicks
Adipose tissue has been widely used particularly in plastic and reconstructive surgery. Many practitioners suggest adipose cells are beneficial in this context. With regard to regenerative medicine and / or the ability to treat disease and injury, I am not aware of any large randomized clinical trials that demonstrate the safety and efficacy of adipose-derived stem cells used in accordance with FDA guidelines.
I went to a “Luncheon about Stem Cell Injections”. It sounded promising. I went thru with it and got the injections because I was desperate from my knee pain. The price of stem cell injections was $3500 per knee injection. All went well. I have had no complications, but haven’t noticed any real major improvement, and here I am a year later. My questions are:
1) I wonder on where the typical injection cells are coming from?
2) I wonder what is the actual cost of the cells?
3) What kind of results are people getting from all these “pop up” clinics or established clinics that are adding this to there list of offerings?
*********************************
Dr. Geoff Lomax: You raise a number of questions and point here; they are all very good and it’s is hard to give a comprehensive response to each one, but here is my reaction:
There are many practitioners in the field of orthopedics who sincerely believe in the potential of cell-based treatments to treat injury / pain
Most of the evidence presented is case reports that individuals have benefited
The challenge we face is not know the exact type of injury and cell treatments used.
Well controlled clinical trials would really help us understand for what cells (or cell products) and for what injury would be helpful
Prices of $3000 to $5000 are not uncommon, and like other forms of private medicine there is often a considerable mark-up in relation to cost of goods.
You are correct that there have not been reports of serious injury for knee injections
However the effectiveness is not clear while simultaneously millions of people have been aided by knee replacements.
*************************************
Do stem cells have benefits for patients going through chemotherapy and radiation therapy?Ruperto
Dr. Kelly Shepard: The idea that a stem cell therapy could help address effects of chemotherapy or radiation is being and has been pursued by several investigators over the years, including some with CIRM support. Towards the earlier stages, people are looking at the ability of different stem cell-derived neural cell preparations to replace or restore function of certain brain cells that are damaged by the effects of chemotherapy or radiation. In a completely different type of approach, a group at City of Hope is exploring whether a bone marrow transplant with specially modified stem cells can provide a protective effect against the chemotherapy that is used to treat a form of brain cancer, glioblastoma. This study is in the final stage of development that, if all goes well, culminates with application to the FDA to allow initiation of a clinical trial to test in people.
Dr. Ingrid Caras: That’s an interesting and valid question. There is a Phase 1 trial ongoing that is evaluating a novel type of stem/progenitor cell from the umbilical cord of healthy deliveries. In animal studies, these cells have been shown to reduce the toxic effects of chemotherapy and radiation and to speed up recovery. These cells are now being tested in a First-in-human clinical trial in patients who are undergoing high-dose chemotherapy to treat their disease.
There is a researcher at Stanford, Michelle Monje, who is investigating that the role of damage to stem cells in the cognitive problems that sometimes arise after chemo- and radiation therapy (“chemobrain”). It appears that damage to stem cells in the brain, especially those responsible for producing oligodendrocytes, contributes to chemobrain. In CIRM-funded work, Dr. Monje has identified small molecules that may help prevent or ameliorate the symptoms of chemobrain.
*****************************************
Is it possible to use a technique developed to fight one disease to also fight another? For instance, the bubble baby disease, which has cured (I think) more than 50 children, may also help fight sickle cell anemia? Don Reed.
Dr. Lisa Kadyk: Hi Don. Yes, the same general technique can often be applied to more than one disease, although it needs to be “customized” for each disease. In the example you cite, the technique is an “autologous gene-modified bone marrow transplant” – meaning the cells come from the patient themselves. This technique is relevant for single gene mutations that cause diseases of the blood (hematopoietic) system. For example, in the case of “bubble baby” diseases, a single mutation can cause failure of immune cell development, leaving the child unable to fight infections, hence the need to have them live in a sterile “bubble”. To cure that disease, blood stem cells, which normally reside in the bone marrow, are collected from the patient and then a normal version of the defective gene is introduced into the cells, where it is incorporated into the chromosomes. Then, the corrected stem cells are transplanted back into the patient’s body, where they can repopulate the blood system with cells expressing the normal copy of the gene, thus curing the disease.
A similar approach could be used to treat sickle cell disease, since it is also caused by a single gene mutation in a gene (beta hemoglobin) that is expressed in blood cells. The same technique would be used as I described for bubble baby disease but would differ in the gene that is introduced into the patient’s blood stem cells.
*****************************************
Is there any concern that CIRM’s lack of support in basic research will hamper the amount of new approaches that can reach clinical stages? Jason
Dr. Kelly Shepard: CIRM always has and continues to believe that basic research is vital to the field of regenerative medicine. Over the past 10 years CIRM has invested $904 million in “discovery stage/basic research”, and about $215 million in training grants that supported graduate students, post docs, clinical fellows, undergraduate, masters and high school students performing basic stem cell research. In the past couple of years, with only a limited amount of funds remaining, CIRM made a decision to invest most of the remaining funds into later stage projects, to support them through the difficult transition from bench to bedside. However, even now, CIRM continues to sponsor some basic research through its Bridges and SPARK Training Grant programs, where undergraduate, masters and even high school students are conducting stem cell research in world class stem cell laboratories, many of which are the same laboratories that were supported through CIRM basic research grants over the past 10 years. While basic stem cell research continues to receive a substantial level of support from the NIH ($1.8 billion in 2018, comprehensively on stem cell projects) and other funders, CIRM believes continued support for basic research, especially in key areas of stem cell research and vital opportunities, will always be important for discovering and developing new treatments.
********************************
What is the future of the use of crispr cas9 in clinical trials in california/globally. Art Venegas
Dr. Kelly Shepard: CRISPR/Cas9 is a powerful gene editing tool. In only a few years, CRISPR/Cas9 technology has taken the field by storm and there are already a few CRISPR/Cas9 based treatments being tested in clinical trials in the US. There are also several new treatments that are at the IND enabling stage of development, which is the final testing stage required by the FDA before a clinical trial can begin. Most of these clinical trials involving CRISPR go through an “ex vivo” approach, taking cells from the patient with a disease causing gene, correcting the gene in the laboratory using CRISPR, and reintroducing the cells carrying the corrected gene back into the patient for treatment. Sickle cell disease is a prime example of a therapy being developed using this strategy and CIRM funds two projects that are preparing for clinical trials with this approach. CRISPR is also being used to develop the next generation of cancer T-cell therapies (e.g. CAR-T), where T-cells – a vital part of our immune system – are modified to target and destroy cancer cell populations. Using CRISPR to edit cells directly in patients “in vivo” (inside the body) is far less common currently but is also being developed. It is important to note that any FDA sanctioned “in vivo” CRISPR clinical trial in people will only modify organ-specific cells where the benefits cannot be passed on to subsequent generations. There is a ban on funding for what are called germ line cells, where any changes could be passed down to future generations.
CIRM is currently supporting multiple CRISPR/Cas9 gene editing projects in California from the discovery or most basic stage of research, through the later stages before applying to test the technique in people in a clinical trial.
While the field is new – if early safety signals from the pioneering trials are good, we might expect a number of new CRISPR-based approaches to enter clinical testing over the next few years. The first of these will will likely be in the areas of bone marrow transplant to correct certain blood/immune or metabolic diseases, and cancer immunotherapies, as these types of approaches are the best studied and furthest along in the pipeline.
**********************************
Explain the differences between gene therapy and stem cell therapy?Renee Konkol
Dr. Stephen Lin: Gene therapy is the direct modification of cells in a patient to treat a disease. Most gene therapies use modified, harmless viruses to deliver the gene into the patient. Gene therapy has recently seen many success in the clinic, with the first FDA approved therapy for a gene induced form of blindness in 2017 and other approvals for genetic forms of smooth muscle atrophy and amyloidosis.
Stem cell therapy is the introduction of stem cells into patients to treat a disease, usually with the purpose of replacing damaged or defective cells that contribute to the disease. Stem cell therapies can be derived from pluripotent cells that have the potential to turn into any cell in the body and are directed towards a specific organ lineage for the therapy. Stem cell therapies can also be derived from other cells, called progenitors, that have the ability to turn into a limited number of other cells in the body. for example hematopoietic or blood stem cells (HSCs), which are found in bone marrow, can turn into other cells of the blood system including B-cells and T-cells: while mesenchymal stem cells (MSCs), which are usually found in fat tissue, can turn into bone, cartilage, and fat cells. The source of these cells can be from the patient’s own body (autologous) or from another person (allogeneic).
Gene therapy is often used in combination with cell therapies when cells are taken from the patient and, in the lab, modified genetically to correct the mutation or to insert a correct form of the defective gene, before being returned to patients. Often referred to as “ex vivo gene therapy” – because the changes are made outside the patient’s body – these therapies include Chimeric Antigen Receptor T (CAR-T) cells for cancer therapy and gene modified HSCs to treat blood disorders such as severe combined immunodeficiency and sickle cell disease. This is an exciting area that has significantly improved and even cured many people already.
***********************************
Currently, how can the outcome of CIRM stem cell medicine projects and clinical trials be soundly interpreted when their stem cell-specific doses are not known?James L. Sherley, M.D., Ph.D., Director. Asymmetrex, LLC
Dr. Stephen Lin: Stem cell therapies that receive approval to conduct clinical trials must submit a package of data to the FDA that includes studies that demonstrate their effectiveness, usually in animal models of the disease that the cell therapy is targeting. Those studies have data on the dose of the cell therapy that creates the therapeutic effect, which is used to estimate cell doses for the clinical trial. CIRM funds discovery and translational stage awards to conduct these types of studies to prepare cell therapies for clinical trials. The clinical trial is also often designed to test multiple doses of the cell therapy to determine the one that has the best therapeutic effect. Dosing can be very challenging with cell therapies because of issues including survival, engraftment, and immune rejection, but CIRM supports studies designed to provide data to give the best estimate possible.
*****************************************
Is there any research on using stem cells to increase the length of long bones in people?” For example, injecting stem cells into the growth plates to see if the cells can be used to lengthen limbs.Sajid
Dr. Kelly Shepard: There is quite a lot of ongoing research seeking ways to repair bones with stem cell based approaches, which is not the same but somewhat related. Much of this is geared towards repairing the types of bone injuries that do not heal well naturally on their own (large gaps, dead bone lesions, degenerative bone conditions). Also, a lot of this research involves engineering bone tissues in the lab and introducing the engineered tissue into a bone lesion that need be repaired. What occurs naturally at the growth plate is a complex interaction between many different cell types, much of which we do not fully understand. We do not fully understand how to use the cells that are used to engineer bone tissue in the lab. However, a group at Stanford, with some CIRM support, recently discovered a “skeletal stem cell” that exists naturally at the ends of human bones and at sites of fracture. These are quite different than MSCs and offer a new path to be explored for repairing and generating bone.
It’s always gratifying when one of the projects you have funded starts to show promising results. It says your faith in the research and the researcher were well founded. But it’s also fun when the project you fund turns up some really cool findings and is picked as a top science story of the year.
That’s what happened with UC San Diego researcher Alysson Muotri’s work on growing brain organoids (tiny clumps of brain cells, created in a dish, that can mimic some of the properties of a real brain). His work, funded by yours truly, was chosen by Discover Magazine as one of the Top Ten Science stories of 2019.
When governments cut funding for scientific research the consequences can be swift, and painful. In Canada last week for example, the government of Ontario cut $5 million in annual funding for stem cell research, effectively ending a project developing a therapy to heal the damaged lungs of premature babies.
Here in the US the federal government is already placing restrictions on support for fetal tissue research and there is speculation embryonic stem cell research could be next. That’s why agencies like CIRM are so important. We don’t rely on a government giving us money every year. Instead, thanks to the voters of California, we have had a steady supply of funds to enable us to plan long-term and support multi-year projects.
But those funds
are due to run out soon. We anticipate funding our last new awards this year
and while we have enough money to continue supporting all the projects our
Board has already approved, we won’t be able to take on any new projects. That’s
bad news for the scientists and, ultimately, really bad for the patients who
are in need of new treatments for currently incurable diseases.
We are going to talk about that in two upcoming events.
UC San Diego Sanford Stem Cell Clinical Center
The first is a
patient advocate event at UC San Diego
on Tuesday, May 28th from 12.30pm to 1.30pm. It’s free, there is parking and snacks and
refreshments will be available.
This will
feature UC San Diego’s Dr. Catriona
Jamieson, CIRM’s President and CEO Dr.
Maria Millan and CIRM Board member and Patient Advocate for Parkinson’s
Disease, David Higgins PhD. The
three will talk about the exciting progress being made at UC San Diego and other
programs around California, but also the uncertain future and the impact that
could have for the field as a whole.
Here’s a link to an Eventbrite page that has more information about the event and also a link to allow you to RSVP ahead of time.
For all of you
who don’t live in the San Diego Area – or who do but can’t make it to the event
– we are holding a similar discussion online on a special Facebook Live: Ask the Stem Cell Team About the Future of Stem Cell
Research event on Thursday, May 30th
from noon till 1pm PDT.
This also
features Dr. Millan and Dr. Higgins, but it also features UC Davis stem cell
scientist, CIRM-grantee and renowned blogger Paul Knoepfler PhD.
Each brings
their own experience, expertise and perspective on the field and will discuss the
impact that a reduction in funding for stem cell research would have, not just
in the short term but in the long run.
Because we all
have a stake in what happens, both events – whether it’s in person or online – include
time for questions from you, the audience.
You can find our
Facebook Live: Ask the Stem Cell Team
About the Future of Stem Cell Research on our Facebook
page at noon on May 30th PDT
CIRM-funded research at Sanford Burnham Prebys Medical Discovery Institute in San Diego is identifying compounds that could be used to help children battling a deadly brain cancer.
The cancer is choroid plexus carcinoma (CPC), a rare
brain tumor that occurs mainly in children. As it grows the tumor can affect
nearby parts of the brain resulting in nausea, vomiting and headaches.
Treatment involves surgery to remove the tumor followed
by chemotherapy and radiation. However, many of the children are too young to
undergo radiation and only around 40 percent are still alive five years after
being diagnosed. Even those who do survive often experience life-long
consequences such as developmental disabilities.
One obstacle to developing better therapies has been the
lack of a good animal model to enhance our understanding of the disease. That’s
where this later research, published in the journal Cancer Research, comes in.
The team at Sanford Burnham developed a new mouse model,
by knocking out p53, a gene known to suppress tumor formation, and activating a
gene called Myc, which is known to cause cancer.
Robert Wechsler-Reya
In a news release, Robert Wechsler-Reya, the senior author of the paper, says this new model mirrors the way CPC grows and develops in humans.
“This model is a
valuable tool that will increase our understanding of the biology of the cancer
and allow us to identify and test novel approaches to therapy. This advance
brings us one step closer to a future where every child survives—and thrives—after
diagnosis with CPC.”
As proof of that
the team tested nearly 8,000 compounds against the mouse tumor cells, to see if
they could help stop or slow the progression of the disease. They identified
three that showed potential of not just stopping the cancer, but of also not
harming healthy surrounding cells.
“These compounds are promising, much-needed leads in the
quest for an effective CPC treatment,” says Wechsler-Reya. “Our laboratory
plans to evaluate these and additional compounds that can effectively treat
this cancer.”
Imagine sitting in the doctor’s office and being told the heartbreaking news that your child has been diagnosed with a malignant brain tumor. As one might expect, the doctor states that the most effective treatment option is typically a combination of chemotherapy and radiation. However, the doctor reveals that there are additional risks to take into account that apply to children. Since children’s tiny bodies are still growing and developing, chemotherapy and radiation can cause long-term side effects such as intellectual disabilities. As a parent, it is painful enough to have to watch a child go through chemotherapy and radiation without adding permanent damage into the fold.
Sadly, this scenario is not unique. Medulloblastoma is the most prevalent form of a pediatric brain tumor with more than 350 children diagnosed with cancer each year. There are four distinct subtypes of medulloblastoma, with the deadliest being known as Group 3.
Researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) are trying to minimize the collateral damage by finding personalized treatments that reduce side effects while remaining effective. Scientists at SBP are working with an inhibitor known as LSD1 that specifically targets Group 3 medulloblastoma in a mouse model. The study, published in Nature Communications, showed that the drug dramatically decreased the size of tumors grown under the mouse’s skin by shrinking the cancer by more than 80 percent. This suggested that it could also be effective against patients’ tumors if it could be delivered to the brain. The LSD1 inhibitor has shown promise in clinical trials, where it has been tested for treating other types of cancer.
According to Robert Wechsler-Reya, Ph.D., senior author of the paper and director of the Tumor Initiation and Maintenance Program at SBP: “Our lab is working to understand the genetic pathways that drive medulloblastoma so we can find better ways to intervene and treat tumors. This study shows that a personalized treatment based upon a patient’s specific tumor type might be within our reach.”
Dr. Wechsler-Reya’s work on medulloblastoma was, in part, funded by the CIRM (LA1-01747) in the form of a Research Leadership Award for $5,226,049.