Cured by Stem Cells

cirm-2016-annual-report-web-12

To get anywhere you need a good map, and you need to check it constantly to make sure you are still on the right path and haven’t strayed off course. A year ago the CIRM Board gave us a map, a Strategic Plan, that laid out our course for the next five years. Our Annual Report for 2016, now online, is our way of checking that we are still on the right path.

I think, without wishing to boast, that it’s safe to say not only are we on target, but we might even be a little bit ahead of schedule.

The Annual Report is chock full of facts and figures but at the heart of it are the stories of the people who are the focus of all that we do, the patients. We profile six patients and one patient advocate, each of whom has an extraordinary story to tell, and each of whom exemplifies the importance of the work we support.

brenden_stories_of_hope

Brenden Whittaker: Cured

Two stand out for one simple reason, they were both cured of life-threatening conditions. Now, cured is not a word we use lightly. The stem cell field has been rife with hyperbole over the years so we are always very cautious in the way we talk about the impact of treatments. But in these two cases there is no need to hold back: Evangelina Padilla Vaccaro and Brenden Whittaker have been cured.

evangelina

Evangelina: Cured

 

In the coming weeks we’ll feature our conversations with all those profiled in the Annual Report, giving you a better idea of the impact the stem cell treatments have had on their lives and the lives of their family. But today we just wanted to give a broad overview of the Annual Report.

The Strategic Plan was very specific in the goals it laid out for us. As an agency we had six big goals, but each Team within the agency, and each individual within those teams had their own goals. They were our own mini-maps if you like, to help us keep track of where we were individually, knowing that every time an individual met a goal they helped the Team get closer to meeting its goals.

As you read through the report you’ll see we did a pretty good job of meeting our targets. In fact, we missed only one and we’re hoping to make up for that early in 2017.

But good as 2016 was, we know that to truly fulfill our mission of accelerating treatments to patients with unmet medical needs we are going to have do equally well, if not even better, in 2017.

That work starts today.

 

California’s stem cell agency rounds up the year with two more big hits

icoc_dec2016-17

CIRM Board meeting with  Jake Javier, CIRM Chair Jonathan Thomas, Vice Chair Sen. Art Torres (Ret.) and President/CEO Randy Mills

It’s traditional to end the year with a look back at what you hoped to accomplish and an assessment of what you did. By that standard 2016 has been a pretty good year for us at CIRM.

Yesterday our governing Board approved funding for two new clinical trials, one to help kidney transplant patients, the second to help people battling a disease that destroys vision. By itself that is a no small achievement. Anytime you can support potentially transformative research you are helping advance the field. But getting these two clinical trials over the start line means that CIRM has also met one of its big goals for the year; funding ten new clinical trials.

If you had asked us back in the summer, when we had funded only two clinical trials in 2016, we would have said that the chances of us reaching ten trials by the end of the year were about as good as a real estate developer winning the White House. And yet……..

Helping kidney transplant recipients

The Board awarded $6.65 million to researchers at Stanford University who are using a deceptively simple approach to help people who get a kidney transplant. Currently people who get a transplant have to take anti-rejection medications for the rest of their life to prevent their body rejecting the new organ. These powerful immunosuppressive medications are essential but also come with a cost; they increase the risk of cancer, infection and heart disease.

icoc_dec2016-3

CIRM President/CEO Randy Mills addresses the CIRM Board

The Stanford team will see if it can help transplant patients bypass the need for those drugs by injecting blood stem cells and T cells (which play an important role in the immune system) from the kidney donor into the kidney recipient. The hope is by using cells from the donor, you can help the recipient’s body more readily adjust to the new organ and reduce the likelihood the body’s immune system will attack it.

This would be no small feat. Every year around 17,000 kidney transplants take place in the US, and many people who get a donor kidney experience fevers, infections and other side effects as a result of taking the anti-rejection medications. This clinical trial is a potentially transformative approach that could help protect the integrity of the transplanted organ, and improve the quality of life for the kidney recipient.

Fighting blindness

The second trial approved for funding is one we are already very familiar with; Dr. Henry Klassen and jCyte’s work in treating retinitis pigmentosa (RP). This is a devastating disease that typically strikes before age 30 and slowly destroys a person’s vision. We’ve blogged about it here and here.

Dr. Klassen, a researcher at UC Irvine, has developed a method of injecting what are called retinal progenitor cells into the back of the eye. The hope is that these cells will repair and replace the cells damaged by RP. In a CIRM-funded Phase 1 clinical trial the method proved safe with no serious side effects, and some of the patients also reported improvements in their vision. This raised hopes that a Phase 2 clinical trial using a larger number of cells in a larger number of patients could really see if this therapy is as promising as we hope. The Board approved almost $8.3 million to support that work.

Seeing is believing

How promising? Well, I recently talked to Rosie Barrero, who took part in the first phase clinical trial. She told me that she was surprised how quickly she started to notice improvements in her vision:

“There’s more definition, more colors. I am seeing colors I haven’t seen in years. We have different cups in our house but I couldn’t really make out the different colors. One morning I woke up and realized ‘Oh my gosh, one of them is purple and one blue’. I was by myself, in tears, and it felt amazing, unbelievable.”

Amazing was a phrase that came up a lot yesterday when we introduced four people to our Board. Each of the four had taken part in a stem cell clinical trial that changed their lives, even saved their lives. It was a very emotional scene as they got a chance to thank the group that made those trials, those treatments possible.

We’ll have more on that in a future blog.

 

 

 

 

With an eye toward 2020, CIRM looks at clinical milestones achieved in 2016

strategy-wideOne year ago, CIRM announced its strategic plan for the next five years. It’s a bold vision to maximize our impact in stem cell research by accelerating stem cell treatments to patients with unmet medical needs.

Our strategic plan, which can be found on our website, details how CIRM will invest in five main program areas including infrastructure, education, discovery, translation and clinical research. While CIRM has invested in these areas in the past, we are doing so now with a renewed focus to make sure our efforts have a lasting impact in California and more importantly for patients.

Now that a year has passed, it’s time to review our progress and look ahead to the next four years.

Our Progress

2016 was a very productive year. On the infrastructure side, CIRM successfully launched the Translating and Accelerating Centers, awarding both grants to QuintilesIMS. The Translating Center supports preclinical research that’s ready to advance to clinical trials but still needs approval by the US Food and Drug Administration (FDA). The Accelerating Center picks up where the Translating Center leaves off and offers support and management services for clinical trial projects to ensure that they succeed. Collectively called The Stem Cell Center, the goal of this new infrastructure is to increase efficiency and shorten the time it takes to get human stem cell trials up and running.

On the research side in 2016, CIRM funded over 70 promising stem cell projects ranging from education to discovery, translational and clinical projects. While of these areas are important to invest in, CIRM has shifted its focus to funding clinical trials in hopes that one or more of these trials will develop into an approved therapy for patients. So far, we’ve funded 25 trials, 22 of which are currently active since CIRM was established.

In our strategic plan, we gave ourselves the aggressive goal of funding 50 new clinical trials by 2020, which equates to 10 new trials per year. So far in 2016, we’ve funded eight clinical trials and tomorrow at our December ICOC meeting, our Governing Board will determine whether we meet our yearly clinical milestone of 10 trials by considering two more for funding.

The first trial is testing a stem cell treatment that could improve the outcome of kidney transplants. For normal kidney transplants, the recipient is required to take immunosuppressive drugs to prevent their body from rejecting the donated organ. This clinical trial aims to bypass the need for these drugs, which carry an increased risk of cancer, infection and heart disease, by injecting blood stem cells and other immune cells from the kidney donor into the patient receiving the kidney. You can read more about this proposed trial here.

The second clinical trial is a stem cell derived therapy to improve vision in patients with a degenerative eye disease called retinitis pigmentosa. This disease destroys the light sensing cells at the back of the eye and has no cure. The trial hopes that by transplanting stem cell derived retinal progenitor cells into the back of the eye, these injected cells will secrete factors that will keep the cells in the eye healthy and possibly improve a patient’s vision. You can read more about this proposed trial here.

Our Future

No matter the outcome at tomorrow’s Board meeting, I think our agency should be proud of its accomplishments since launching our strategic plan. The eight clinical trials we’ve funded this year are testing stem cell therapies for diseases including muscular dystrophy, kidney disease, primary immune diseases, and multiple types of cancer and blood disorders.

At this pace, it seems likely that we will achieve many of the goals in our strategic plan including our big goal of 50 new clinical trials. But pride and a sense of accomplishment are not what CIRM is ultimately striving for. Our mission and the reason why we exist are to help people and improve their lives. I’ll leave you with a quote from our President and CEO Randy Mills:

CIRM CEO and President, Randy Mills.

Randy Mills

“In everything we do there is a real sense of urgency, because lives are at stake. Our Board’s support for these programs highlights how every member of the CIRM team shares that commitment to moving the most promising research out of the lab and into patients as quickly as we can.”


Related Links:

Translating great stem cell ideas into effective therapies

alzheimers

CIRM funds research trying to solve the Alzheimer’s puzzle

In science, there are a lot of terms that could easily mystify people without a research background; “translational” is not one of them. Translational research simply means to take findings from basic research and advance them into something that is ready to be tested in people in a clinical trial.

Yesterday our Governing Board approved $15 million in funding for four projects as part of our Translational Awards program, giving them the funding and support that we hope will ultimately result in them being tested in people.

Those projects use a variety of different approaches in tackling some very different diseases. For example, researchers at the Gladstone Institutes in San Francisco received $5.9 million to develop a new way to help the more than five million Americans battling Alzheimer’s disease. They want to generate brain cells to replace those damaged by Alzheimer’s, using induced pluripotent stem cells (iPSCs) – an adult cell that has been changed or reprogrammed so that it can then be changed into virtually any other cell in the body.

CIRM’s mission is to accelerate stem cell treatments to patients with unmet medical needs and Alzheimer’s – which has no cure and no effective long-term treatments – clearly represents an unmet medical need.

Another project approved by the Board is run by a team at Children’s Hospital Oakland Research Institute (CHORI). They got almost $4.5 million for their research helping people with sickle cell anemia, an inherited blood disorder that causes intense pain, and can result in strokes and organ damage. Sickle cell affects around 100,000 people in the US, mostly African Americans.

The CHORI team wants to use a new gene-editing tool called CRISPR-Cas9 to develop a method of editing the defective gene that causes Sickle Cell, creating a healthy, sickle-free blood supply for patients.

Right now, the only effective long-term treatment for sickle cell disease is a bone marrow transplant, but that requires a patient to have a matched donor – something that is hard to find. Even with a perfect donor the procedure can be risky, carrying with it potentially life-threatening complications. Using the patient’s own blood stem cells to create a therapy would remove those complications and even make it possible to talk about curing the disease.

While damaged cartilage isn’t life-threatening it does have huge quality of life implications for millions of people. Untreated cartilage damage can, over time lead to the degeneration of the joint, arthritis and chronic pain. Researchers at the University of Southern California (USC) were awarded $2.5 million to develop an off-the-shelf stem cell product that could be used to repair the damage.

The fourth and final award ($2.09 million) went to Ankasa Regenerative Therapeutics, which hopes to create a stem cell therapy for osteonecrosis. This is a painful, progressive disease caused by insufficient blood flow to the bones. Eventually the bones start to rot and die.

As Jonathan Thomas, Chair of the CIRM Board, said in a news release, we are hoping this is just the next step for these programs on their way to helping patients:

“These Translational Awards highlight our goal of creating a pipeline of projects, moving through different stages of research with an ultimate goal of a successful treatment. We are hopeful these projects will be able to use our newly created Stem Cell Center to speed up their progress and pave the way for approval by the FDA for a clinical trial in the next few years.”

Stem cell agency funds clinical trials in three life-threatening conditions

strategy-wide

A year ago the CIRM Board unanimously approved a new Strategic Plan for the stem cell agency. In the plan are some rather ambitious goals, including funding ten new clinical trials in 2016. For much of the last year that has looked very ambitious indeed. But today the Board took a big step towards reaching that goal, approving three clinical trials focused on some deadly or life-threatening conditions.

The first is Forty Seven Inc.’s work targeting colorectal cancer, using a monoclonal antibody that can strip away the cancer cells ability to evade  the immune system. The immune system can then attack the cancer. But just in case that’s not enough they’re going to hit the tumor from another side with an anti-cancer drug called cetuximab. It’s hoped this one-two punch combination will get rid of the cancer.

Finding something to help the estimated 49,000 people who die of colorectal cancer in the U.S. every year would be no small achievement. The CIRM Board thought this looked so promising they awarded Forty Seven Inc. $10.2 million to carry out a clinical trial to test if this approach is safe. We funded a similar approach by researchers at Stanford targeting solid tumors in the lung and that is showing encouraging results.

Our Board also awarded $7.35 million to a team at Cedars-Sinai in Los Angeles that is using stem cells to treat pulmonary hypertension, a form of high blood pressure in the lungs. This can have a devastating, life-changing impact on a person leaving them constantly short of breath, dizzy and feeling exhausted. Ultimately it can lead to heart failure.

The team at Cedars-Sinai will use cells called cardiospheres, derived from heart stem cells, to reduce inflammation in the arteries and reduce blood pressure. CIRM is funding another project by this team using a similar  approach to treat people who have suffered a heart attack. This work showed such promise in its Phase 1 trial it’s now in a larger Phase 2 clinical trial.

The largest award, worth $20 million, went to target one of the rarest diseases. A team from UCLA, led by Don Kohn, is focusing on Adenosine Deaminase Severe Combined Immune Deficiency (ADA-SCID), which is a rare form of a rare disease. Children born with this have no functioning immune system. It is often fatal in the first few years of life.

The UCLA team will take the patient’s own blood stem cells, genetically modify them to fix the mutation that is causing the problem, then return them to the patient to create a new healthy blood and immune system. The team have successfully used this approach in curing 23 SCID children in the last few years – we blogged about it here – and now they have FDA approval to move this modified approach into a Phase 2 clinical trial.

So why is CIRM putting money into projects that it has either already funded in earlier clinical trials or that have already shown to be effective? There are a number of reasons. First, our mission is to accelerate stem cell treatments to patients with unmet medical needs. Each of the diseases funded today represent an unmet medical need. Secondly, if something appears to be working for one problem why not try it on another similar one – provided the scientific rationale and evidence shows it is appropriate of course.

As Randy Mills, our President and CEO, said in a news release:

“Our Board’s support for these programs highlights how every member of the CIRM team shares that commitment to moving the most promising research out of the lab and into patients as quickly as we can. These are very different projects, but they all share the same goal, accelerating treatments to patients with unmet medical needs.”

We are trying to create a pipeline of projects that are all moving towards the same goal, clinical trials in people. Pipelines can be horizontal as well as vertical. So we don’t really care if the pipeline moves projects up or sideways as long as they succeed in moving treatments to patients. And I’m guessing that patients who get treatments that change their lives don’t particularly

A look back at the last year – but with our eyes firmly on the future

Randy

CIRM President & CEO Randy Mills doesn’t want “good”, he wants “better”

Better.

With that single word Randy Mills, our President and CEO, starts and ends his letter in our 2015 Annual Report and lays out the simple principle that guides the way we work at CIRM.

Better.

But better what?

“Better infrastructure to translate early stage ideas into groundbreaking clinical trials. Better regulatory practices to advance promising stem cell treatments more efficiently. Better treatments for patients in need.”

“Better” is also the standard everyone at CIRM holds themselves to. Getting better at what we do so we can fulfill our mission of accelerating stem cell treatments to patients with unmet medical needs.

The 2015 Annual Report highlights the achievements of the last year, detailing how we invested $135 million in 47 different projects at all levels of research. How our Board unanimously passed our new Strategic Plan, laying out an ambitious series of goals for the next five years from funding 50 new clinical trials, to creating a new regulatory process for stem cell therapies.

Snapshot of CIRM's 2015 Funding

The report offers a snapshot of where our money has gone this year, and how much we have left. It breaks down what percentage of our funding has gone to different diseases and how much we have spent on administration.

Jonathan Thomas, the Chair of our Board, takes a look back at where we started, 10 years ago, comparing what we did then (16 awards for a total of $12.5 million) to what we are doing today. His conclusion; we’re doing better.

But we still have a long way to go. And we are determined to get even better.

P.S. By the way we are changing the way we do our Annual Report. Our next one will come out on January 1, 2017. We figured it just made sense to take a look back at the last year as soon as the new year begins. It gives you a better (that word again) sense of what we did and where we  are heading. So look out for that, coming sooner than you think.

CIRM Board targets diabetes and kidney disease with big stem cell research awards

diabetes2

A recent study  estimated there may be more than 500 million people worldwide who have diabetes. That’s an astounding figure and makes diabetes one of the largest chronic disease epidemics in human history.

One of the most serious consequences of untreated or uncontrolled diabetes is kidney damage. That can lead to fatigue, weakness, confusion, kidney failure and even death. So two decisions taken by the CIRM Board today were good news for anyone already suffering from either diabetes or kidney disease. Or both.

The Board awarded almost $10 million to Humacyte to run a Phase 3 clinical trial of an artificial vein needed by people undergoing hemodialysis – that’s the most common form of dialysis for people with kidney damage. Hemodialysis helps clean out impurities and toxins from the blood. Without it waste will build up in the kidneys with devastating consequences.

The artificial vein is a kind of bioengineered blood vessel. It is implanted in the individual’s arm and, during dialysis, is connected to a machine to move the blood out of the body, through a filter, and then back into the body. The current synthetic version of the vein is effective but is prone to clotting and infections, and has to be removed regularly. All this puts the patient at risk.

Humacyte’s version – called a human acellular vessel or HAV – uses human cells from donated aortas that are then seeded onto a biodegradable scaffold and grown in the lab to form the artificial vein. When fully developed the structure is then “washed” to remove all the cellular tissue, leaving just a collagen tube. That is then implanted in the patient, and their own stem cells grow onto it, essentially turning it into their own tissue.

In earlier studies Humacyte’s HAV was shown to be safer and last longer than current versions. As our President and CEO, Randy Mills, said in a news release, that’s clearly good news for patients:

“This approach has the potential to dramatically improve our ability to care for people with kidney disease. Being able to reduce infections and clotting, and increase the quality of care the hemodialysis patients get could have a significant impact on not just the quality of their life but also the length of it.”

There are currently almost half a million Americans with kidney disease who are on dialysis. Having something that makes life easier, and hopefully safer, for them is a big plus.

The Humacyte trial is looking to enroll around 350 patients at three sites in California; Sacramento, Long Beach and Irvine.

While not all people with diabetes are on dialysis, they all need help maintaining healthy blood sugar levels, particularly people with type 1 diabetes. That’s where the $3.9 million awarded to ViaCyte comes in.

We’re already funding a clinical trial with ViaCyte  using an implantable delivery system containing stem cell-derived cells that is designed to measure blood flow, detect when blood sugar is low, then secrete insulin to restore it to a healthy level.

This new program uses a similar device, called a PEC-Direct. Unlike the current clinical trial version, the PEC-Direct allows the patient’s blood vessels to directly connect, or vasularize, with the cells inside it. ViaCyte believes this will allow for a more robust engraftment of the stem cell-derived cells inside it and that those cells will be better able to produce the insulin the body needs.

Because it allows direct vascularization it means that people who get the delivery system  will also need to get chronic immune suppression to stop their body’s immune system attacking it. For that reason it will be used to treat patients with type 1 diabetes that are at high risk for acute complications such as severe hypoglycemic (low blood sugar) events associated with hypoglycemia unawareness syndrome.

In a news release Paul Laikind, Ph.D., President and CEO of ViaCyte, said this approach could help patients most at risk.

“This high-risk patient population is the same population that would be eligible for cadaver islet transplants, a procedure that can be highly effective but suffers from a severe lack of donor material. We believe PEC-Direct could overcome the limitations of islet transplant by providing an unlimited supply of cells, manufactured under cGMP conditions, and a safer, more optimal route of administration.”

The Board also approved more than $13.6 million in awards under our Discovery program. You can see the winners here.

 

The Spanish Inquisition and a tale of two stem cell agencies

Monty

Monty Python’s Spanish Inquisition sketch: Photo courtesy Daily Mail UK

It’s not often an article on stem cell research brings the old, but still much loved, British comedy series Monty Python into the discussion but a new study in the journal Cell Stem Cell does just that, comparing the impact of CIRM and the UK’s Regenerative Medicine Platform (UKRMP).

The article, written by Fiona Watt of King’s College London and Stanford’s Irv Weissman (a CIRM grantee – you can see his impressive research record here) looks at CIRM and UKRMP’s success in translating stem cell research into clinical applications in people.

It begins by saying that in research, as in real estate, location is key:

“One thing that is heavily influenced by location, however, is our source of funding. This in turn depends on the political climate of the country in which we work, as exemplified by research on stem cells.”

And, as Weissman and Watt note, political climate can have a big impact on that funding. CIRM was created by the voters of California in 2004, largely in response to President George W. Bush’s restrictions on the use of federal funds for embryonic stem cell research. UKRMP, in contrast was created by the UK government in 2013 and designed to help strengthen the UK’s translational research sector. CIRM was given $3 billion to do its work. UKRMP has approximately $38 million.

Inevitably the two agencies took very different approaches to funding, shaped in part by the circumstances of their birth – one as a largely independent state agency, the other created as a tool of national government.

CIRM, by virtue of its much larger funding was able to create world-class research facilities, attract top scientists to California and train a whole new generation of scientists. It has also been able to help some of the most promising projects get into clinical trials. UKRMP has used its more limited funding to create research hubs, focusing on areas such as cell behavior, differentiation and manufacturing, and safety and effectiveness. Those hubs are encouraged to work collaboratively, sharing their expertise and best practices.

Weissman and Watt touch on the problems both agencies ran into, including the difficulty of moving even the best research out of the lab and into clinical trials:

“Although CIRM has moved over 20 projects into clinical trials most are a long way from becoming standard therapies. This is not unexpected, as the interval between discovery and FDA approved therapeutic via clinical trials is in excess of 10 years minimum.”

 

And here is where Monty Python enters the picture. The authors quote one of the most famous lines from the series: “Nobody expects the Spanish Inquisition – because our chief weapon is surprise.”

They use that to highlight the surprises and uncertainty that stem cell research has gone through in the more than ten years since CIRM was created. They point out that a whole category of cells, induced pluripotent stem (iPS) cells, didn’t exist until 2006; and that few would have predicted the use of gene/stem cell therapy combinations. The recent development of the CRISPR/Cas9 gene-editing technology shows the field is progressing at a rate and in directions that are hard to predict; a reminder that that researchers and funding agencies should continue to expect the unexpected.

With two such different agencies the authors wisely resist the temptation to make any direct comparisons as to their success but instead conclude:

“…both CIRM and UKRMP have similar goals but different routes (and funding) to achieving them. Connecting people to work together to move regenerative medicine into the clinic is an over-arching objective and one that, we hope, will benefit patients regardless of where they live.”

What’s the big idea? Or in this case, what’s the 19 big ideas?

supermarket magazineHave you ever stood in line in a supermarket checkout line and browsed through the magazines stacked conveniently at eye level? (of course you have, we all have). They are always filled with attention-grabbing headlines like “5 Ways to a Slimmer You by Christmas” or “Ten Tips for Rock Hard Abs” (that one doesn’t work by the way).

So with those headlines in mind I was tempted to headline our latest Board meeting as: “19 Big Stem Cell Ideas That Could Change Your Life!”. And in truth, some of them might.

The Board voted to invest more than $4 million in funding for 19 big ideas as part of CIRM’s Discovery Inception program. The goal of Inception is to provide seed funding for great, early-stage ideas that may impact the field of human stem cell research but need a little support to test if they work. If they do work out, the money will also enable the researchers to gather the data they’ll need to apply for larger funding opportunities, from CIRM and other institutions, in the future

The applicants were told they didn’t have to have any data to support their belief that the idea would work, but they did have to have a strong scientific rational for why it might

As our President and CEO Randy Mills said in a news release, this is a program that encourages innovative ideas.

Randy Mills, Stem Cell Agency President & CEO

Randy Mills, CIRM President & CEO

“This is a program supporting early stage ideas that have the potential to be ground breaking. We asked scientists to pitch us their best new ideas, things they want to test but that are hard to get funding for. We know not all of these will pan out, but those that do succeed have the potential to advance our understanding of stem cells and hopefully lead to treatments in the future.”

So what are some of these “big” ideas? (Here’s where you can find the full list of those approved for funding and descriptions of what they involve). But here are some highlights.

Alysson Muotri at UC San Diego has identified some anti-retroviral drugs – already approved by the Food and Drug Administration (FDA) – that could help stop inflammation in the brain. This kind of inflammation is an important component in several diseases such as Alzheimer’s, autism, Parkinson’s, Lupus and Multiple Sclerosis. Alysson wants to find out why and how these drugs helps reduce inflammation and how it works. If he is successful it is possible that patients suffering from brain inflammation could immediately benefit from some already available anti-retroviral drugs.

Stanley Carmichael at UC Los Angeles wants to use induced pluripotent stem (iPS) cells – these are adult cells that have been genetically re-programmed so they are capable of becoming any cell in the body – to see if they can help repair the damage caused by a stroke. With stroke the leading cause of adult disability in the US, there is clearly a big need for this kind of big idea.

Holger Willenbring at UC San Francisco wants to use stem cells to create a kind of mini liver, one that can help patients whose own liver is being destroyed by disease. The mini livers could, theoretically, help stabilize a person’s own liver function until a transplant donor becomes available or even help them avoid the need for liver transplantation in the first place. Considering that every year, one in five patients on the US transplant waiting list will die or become too sick for transplantation, this kind of research could have enormous life-saving implications.

We know not all of these ideas will work out. But all of them will help deepen our understanding of how stem cells work and what they can, and can’t, do. Even the best ideas start out small. Our funding gives them a chance to become something truly big.


Related Links:

Funding a clinical trial for deadly cancer is a no brainer

The beast of cancers
For a disease that is supposedly quite rare, glioblastoma seems to be awfully common. I have lost two friends to the deadly brain cancer in the last few years. Talking to colleagues and friends here at CIRM, it’s hard to find anyone who doesn’t know someone who has died of it.

Immunocellular

Imagery of glioblastoma, a deadly brain cancer,  from ImmunoCellular’s website

So when we got an application to fund a Phase 3 clinical trial to target the cancer stem cells that help fuel glioblastoma, it was really a no brainer to say yes. Of course it helped that the scientific reviewers – our Grants Working Group or GWG – who looked at the application voted unanimously to approve it. For them, it was great science for an important cause.

Today our Board agreed with the GWG and voted to award $19.9 million to LA-based ImmunoCellular Therapeutics to carry out a clinical trial that targets glioblastoma cancer stem cells. They’re hoping to begin the trial very soon, recruiting around 400 newly diagnosed patients at some 120 clinical sites around the US, Canada and Europe.

There’s a real urgency to this work. More than 50 percent of those diagnosed with glioblastoma die within 15 months, and more than 90 percent within three years. There are no cures and no effective long-term treatments.

As our President and CEO, Dr. Randy Mills, said in a news release:

 “This kind of deadly disease is precisely why we created CIRM 2.0, our new approval process to accelerate the development of therapies for patients with unmet medical needs. People battling glioblastoma cannot afford to wait years for us to agree to fund a treatment when their survival can often be measured in just months. We wanted a process that was more responsive to the needs of patients, and that could help companies like ImmunoCellular get their potentially life-saving therapies into clinical trials as quickly as possible.”

The science
The proposed treatment involves some rather cool science. Glioblastoma stem cells can evade standard treatments like chemotherapy and cause the recurrence and growth of the tumors. The ImmunoCellular therapy addresses this issue and targets six cell surface proteins that are found on glioblastoma cancer stem cells.

The researchers take immune cells from the patient’s own immune system and expose them to fragments of these cancer stem cell surface proteins in the lab. By re-engineering the immune cells in this way they are then able to recognize the cancer stem cells.

My colleague Todd Dubnicoff likened it to letting a bloodhound sniff a piece of clothing from a burglar so it’s able to recognize the scent and hunt the burglar down.  When the newly trained immune system cells are returned to the patient’s body, they can now help “sniff out” and hopefully kill the cancer stem cells responsible for the tumor’s recurrence and growth.

Like a bloodhound picking up the scent of a burglar, ImmunoCellular's therapy helps the immune system track down brain cancer stem cells (source: wikimedia commons)

Like a bloodhound picking up the scent of a burglar, ImmunoCellular’s therapy helps the immune system track down brain cancer stem cells (source: Wikimedia Commons)

Results from both ImmunoCellular’s Phase 1 and 2 trials using this approach were encouraging, showing that patients given the therapy lived longer than those who got standard treatment and experienced only minimal side effects.

Turning the corner against glioblastoma
There’s a moment immediately after the Board votes “yes” to fund a project like this. It’s almost like a buzz, where you feel that you have just witnessed something momentous, a moment where you may have turned the corner against a deadly disease.

We have a saying at the stem cell agency: “Come to work every day as if lives depend on it, because lives depend on it.” On days like this, you feel that we’ve done something that could ultimately help save some of those lives.