Stem cells have a neat trick to prevent tissue scarring

A CIRM-funded study from the Stanford University School of Medicine has discovered that stem cells in muscle tissue “police themselves” to reduce fibrosis or the buildup of scar tissue. The ability to prevent scarring could promote anti-aging properties by keeping muscles healthy and functional and could also benefit patients with muscle wasting diseases like muscular dystrophy. The study appeared in the journal Nature earlier this week.

The Stanford team, led by Professor Thomas Rando, was interested in understanding how healthy muscle tissue regenerates under normal conditions and in response to injury. They focused on cells called fibro-adipogenic progenitors (FAPs), which live in the muscle and produce a framework of connective tissue that promotes muscle regeneration.

By studying FAPs in mice, the scientists found that these cells produced a protein called platelet-derived growth factor receptor alpha (PDGFRa), which regulates their ability to proliferate, or make more copies of themselves. FAPs produce different versions of PDGFRa as a way to police themselves and deal with injury and disease.

The normal version of PDGFRa tells FAPs to divide and proliferate. Typically, this response is a good thing if FAPs are trying to repair tissue damage, but too much cell proliferation can lead to fibrosis and scarring. To counteract this, FAPs can produce a truncated version of PDGFRa, which tells FAPs to stop dividing and prevents tissue scarring.

Senior author on the study, Professor Thomas Rando, explained in a Stanford Medicine news release why it’s important to prevent scarring in muscle tissue:

Dr. Thomas Rando, Stanford

Dr. Thomas Rando, Stanford

“Fibrosis occurs in many degenerative diseases and also in normal aging. It negatively impacts muscle regeneration by altering the stem cell niche and inhibiting the stem cell function. In addition, as more scarring occurs, muscles become stiff and can’t contract and relax smoothly.”

 

Knowing that the truncated version of PDGFRa can stop FAPs from proliferating too much and cause scarring, the team found a way to force FAPs to generate this shortened version of PDGFRa in mice. When they tried this approach in mice, they observed that both young and old mice produced less scarring after healing from muscle injury. On the other hand, if these mice produced less of the truncated PDGFRa, the mice had more scarring than they normally would.

Nature.

Muscle tissue in old mice shows signs of scarring (left) while old mice treated with the truncated PDGFRa have reduced scarring in their muscle (right). (Nature)

Rando’s team believes that they can harness the properties of self-policing stem cells like FAPs to develop new potential therapies that can treat fibrotic diseases. In future studies, Rando hopes to apply their approach to treating muscular dystrophy – a muscle wasting disease that also is associated with increased fibrosis.

“We’d like to test this approach in a mouse model of muscular dystrophy next. Perhaps we could also use this approach to reduce fibrosis in this disease.”

Using skin cells to repair damaged hearts

heart-muscle

Heart muscle  cells derived from skin cells

When someone has a heart attack, getting treatment quickly can mean the difference between life and death. Every minute delay in getting help means more heart cells die, and that can have profound consequences. One study found that heart attack patients who underwent surgery to re-open blocked arteries within 60 minutes of arriving in the emergency room had a six times greater survival rate than people who had to wait more than 90 minutes for the same treatment.

Clearly a quick intervention can be life-saving, which means an approach that uses a patient’s own stem cells to treat a heart attack won’t work. It simply takes too long to harvest the healthy heart cells, grow them in the lab, and re-inject them into the patient. By then the damage is done.

Now a new study shows that an off-the-shelf approach, using donor stem cells, might be the most effective way to go. Scientists at Shinshu University in Japan, used heart muscle stem cells from one monkey, to repair the damaged hearts of five other monkeys.

In the study, published in the journal Nature, the researchers took skin cells from a macaque monkey, turned those cells into induced pluripotent stem cells (iPSCs), and then turned those cells into cardiomyocytes or heart muscle cells. They then transplanted those cardiomyocytes into five other monkeys who had experienced an induced heart attack.

After 3 months the transplanted monkeys showed no signs of rejection and their hearts showed improved ability to contract, meaning they were pumping blood around the body more powerfully and efficiently than before they got the cardiomyocytes.

It’s an encouraging sign but it comes with a few caveats. One is that the monkeys used were all chosen to be as close a genetic match to the donor monkey as possible. This reduced the risk that the animals would reject the transplanted cells. But when it comes to treating people, it may not be feasible to have a wide selection of heart stem cell therapies on hand at every emergency room to make sure they are a good genetic match to the patient.

The second caveat is that all the transplanted monkeys experienced an increase in arrhythmias or irregular heartbeats. However, Yuji Shiba, one of the researchers, told the website ResearchGate that he didn’t think this was a serious issue:

“Ventricular arrhythmia was induced by the transplantation, typically within the first four weeks. However, this post-transplant arrhythmia seems to be transient and non-lethal. All five recipients of [the stem cells] survived without any abnormal behaviour for 12 weeks, even during the arrhythmia. So I think we can manage this side effect in clinic.”

Even with the caveats, this study demonstrates the potential for a donor-based stem cell therapy to treat heart attacks. This supports an approach already being tested by Capricor in a CIRM-funded clinical trial. In this trial the company is using donor cells, derived from heart stem cells, to treat patients who developed heart failure after a heart attack. In early studies the cells appear to reduce scar tissue on the heart, promote blood vessel growth and improve heart function.

The study from Japan shows the possibilities of using a ready-made stem cell approach to helping repair damage caused by a heart attacks. We’re hoping Capricor will take it from a possibility, and turn it into a reality.

If you would like to read some recent blog posts about Capricor go here and here.

Scientists find new stem cell target for regenerating aging muscles

Young Arnold (wiki)

Young Arnold (wiki)

Today I’m going to use our former governor Arnold Schwarzenegger as an example of what happens to our muscles when we age.

One of Arnold’s many talents when he was younger was being a professional bodybuilder. As you can see in this photo, Arnold worked hard to generate an impressive amount of muscle that landed him lead roles in movies Conan the Barbarian and The Terminator.

Older Arnold

Older Arnold

If you look at pictures of Arnold now (who is now 68), while still being an impressively large human being, it’s obvious that much of his muscular bulk has diminished. That’s because as humans age, so do their muscles.

Muscles shrink with age

As muscles age, they slowly lose mass and shrink (a condition called sarcopenia) because of a number of reasons – one of them being their inability to regenerate new muscle tissue efficiently. The adult stem cells responsible for muscle regeneration are called satellite cells. When muscles are injured, satellite cells are activated to divide and generate new muscle fibers that can repair injury and also improve muscle function.

However, satellite cells become less efficient at doing their job over time because of environmental and internal reasons, and scientists are looking for new targets that can restore and promote the regenerative abilities of muscle stem cells for human therapeutic applications.

A study published earlier this week in Nature Medicine, identified a potential new target that could boost muscle stem cell regeneration and improved muscle function in a mouse model of Duchenne muscular dystrophy.

β1-integrin is important for muscle regeneration

Scientists from the Carnegie Institute of Washington found that β1-integrin is important for maintaining the homeostasis (or balance) of the muscle stem cell environment. If β1-integrin is doing its job properly, muscle stem cells are able to go about their regular routine of being dormant, activating in response to injury, dividing to create new muscle tissue, and then going back to sleep.

When the scientists studied the function of β1-integrin in the muscles of aged mice, they found that the integrin wasn’t functioning properly. Without β1-integrin, mouse satellite cells spontaneously turned into muscle tissue and were unable to maintain their regenerative capacity following muscle injury.

Upon further inspection, they found that β1-integrin interacts with a growth factor called fibroblast growth factor 2 (Fgf2) and this relationship was essential for promoting muscle regeneration following injury. When β1-integrin function deteriorates as in the muscles of aged mice, the mice lose sensitivity to the regenerative capacity of Fgf2.

Restoring muscle function in mice with muscular dystrophy

By using an antibody to artificially activate β1-integrin function in the muscles of aged mice, they were able to restore Fgf2 responsiveness and boosted muscle regeneration after injury. When a similar technique was used in mice with Duchenne muscular dystrophy, they observed muscle regeneration and improved muscle function.

Muscle loss seen in muscular dystrophy mice (left). Treatment with beta1 intern boosts muscle regeneration in the same mice (right). (Nature Medicine)

Muscle loss seen in muscular dystrophy mice (left). Treatment with B1-integrin boosts muscle regeneration in the same mice (right). (Nature Medicine)

The authors believe that β1-integrin acts as a sensor of the muscle stem cell environment that it maintains a balance between a dormant and a regenerative stem cell state. They conclude in their publication:

“β1-integrin senses the SC [satellite cell] niche to maintain responsiveness to Fgf2, and this integrin represents a potential therapeutic target for pathological conditions of the muscle in which the stem cell niche is compromised.”

Co-author on the study Dr. Chen-Ming Fan also spoke to the clinical relevance of their findings in a piece by GenBio:

“Inefficient muscular healing in the elderly is a significant clinical problem and therapeutic approaches are much needed, especially given the aging population. Finding a way to target muscle stem cells could greatly improve muscle renewal in older individuals.”

Does this mean anyone can be a body builder?

So does this study mean that one day we can prevent muscle loss in the elderly and all be body builders like Arnold? I highly doubt that. It’s important to remember these are preclinical studies done in mouse models and much work needs to be done to test whether β1-integrin is an appropriate therapeutic target in humans.

However, I do think this study sheds new light on the inner workings of the muscle stem cell environment. Finding out more clues about how to promote the health and regenerative function of this environment will bring the field closer to generating new treatments for patients suffering from muscle wasting diseases like muscular dystrophy.

Helping stem cells sleep can boost their power to heal

Mouse muscle

Mighty mouse muscle cells

We are often told that sleep is one of the most important elements of a healthy lifestyle, that it helps in the healing and repair of our heart and blood vessels – among other things.

It turns out that sleep, or something very similar, is equally important for stem cells, helping them retain their power or potency, which is a measure of their effectiveness and efficiency in generating the mature adult cells that are needed to repair damage. Now researchers from Stanford, with a little help from CIRM, have found a way to help stem cells get the necessary rest before kicking in to action. This could pave the way for a whole new approach to treating a variety of genetic disorders such as muscular dystrophy.

Inside out

One problem that has slowed down the development of stem cell therapies has been the inability to manipulate stem cells outside of the body, without reducing their potency. In the body these cells can remain quiescent or dormant for years until called in to action to repair an injury. That’s because they are found in a specialized environment or niche, one that has very particular physical, chemical and biological properties. However, once the stem cells are removed from that niche and placed in a dish in the lab they become active and start proliferating and changing into other kinds of cells.

You might think that’s good, because we want those stem cells to change and mature, but in this case we don’t, at least not yet. We want them to wait till we return them to the body to do their magic. Changing too soon means they have less power to do that.

Researchers at Stanford may have found a way to stop that happening, by creating an environment in the lab that more closely resembles that in the body, so the stem cells remain dormant longer.

As senior author, Thomas Rando, said in a Stanford news release, they have found a way to keep the stem cells dormant longer:

Dr. Thomas Rando, Stanford

Dr. Thomas Rando, Stanford

“Normally these stem cells like to cuddle right up against their native muscle fibers. When we disrupt that interaction, the cells are activated and begin to divide and become less stemlike. But now we’ve designed an artificial substrate that, to the cells, looks, smells and feels like a real muscle fiber. When we also bathe these fibers in the appropriate factors, we find that the stem cells maintain high-potency and regenerative capacity.”

Creating an artificial home

When mouse muscle stem cells (MuSCs) are removed from the mouse they lose their potency after just two days. So the Stanford team set out to identify what elements in the mouse niche helped the cells remain dormant. They identified the molecular signature of the quiescent MuSCs and used that to help screen different compounds to see which ones could help keep those cells dormant, even after they were removed from the mouse and collected in a lab dish.

They whittled down the number of potential compounds involved in this process from 50 to 10, and then tested these in different combinations until they found a formulation that kept the stem cells quiescent for at least 2 days outside of the mouse.

But that was just the start. Next they experimented with different kinds of engineered muscle fibers, to simulate the physical environment inside the mouse niche. After testing various materials, they found that the one with the greatest elasticity was the most effective and used that to create a kind of scaffold for the stem cells.

The big test

The artificial niche they created clearly worked in helping keep the MuSCs in a dormant state outside of the mouse. But would they work when transplanted back into the mouse? To answer this question they tested these stem cells to see if they retained their ability to self-renew and to change into other kinds of cells in the mouse. The good news is they did, and were far more effective at both than MuSCs that had not been stored in the artificial niche.

So, great news for mice but what about people, would this same approach work with human muscle stem cells (hMuSCs)? They next tested this approach using hMuSCs and found that the hMuSCs cultured on the artificial niche were more effective at both self-renewal and retaining their potency than hMuSCs kept in more conventional conditions, at least in the lab.

In the study, published in the journal Nature Biotechnology, the researchers say this finding could help overcome some of the challenges that have slowed down the development of effective therapies:

“Research on MuSCs, hematopoietic stem cells and neural stem cells has shown that very small numbers of quiescent stem cells, even single cells, can replace vast amounts of tissue; culture systems that that maintain stem cell quiescence may allow these findings to be translated to clinical practice. In addition, the possibility of culturing hMuSCs for longer time periods without loss of potency in order to correct mutations associated with genetic disorders, such as muscular dystrophy, followed by transplantation of the corrected cells to replace the pathogenic tissue may enable improved stem cell therapeutics for muscle disorders.”

Rare disease underdogs come out on top at CIRM Board meeting

 

It seems like an oxymoron but one in ten Americans has a rare disease. With more than 7,000 known rare diseases it’s easy to see how each one could affect thousands of individuals and still be considered a rare or orphan condition.

Only 5% of rare diseases have FDA approved therapies

rare disease

(Source: Sermo)

People with rare diseases, and their families, consider themselves the underdogs of the medical world because they often have difficulty getting a proper diagnosis (most physicians have never come across many of these diseases and so don’t know how to identify them), and even when they do get a diagnosis they have limited treatment options, and those options they do have are often very expensive.  It’s no wonder these patients and their families feel isolated and alone.

Rare diseases affect more people than HIV and Cancer combined

Hopefully some will feel less isolated after yesterday’s CIRM Board meeting when several rare diseases were among the big winners, getting funding to tackle conditions such as ALS or Lou Gehrig’s disease, Severe Combined Immunodeficiency or SCID, Canavan disease, Tay-Sachs and Sandhoff disease. These all won awards under our Translation Research Program except for the SCID program which is a pre-clinical stage project.

As CIRM Board Chair Jonathan Thomas said in our news release, these awards have one purpose:

“The goal of our Translation program is to support the most promising stem cell-based projects and to help them accelerate that research out of the lab and into the real world, such as a clinical trial where they can be tested in people. The projects that our Board approved today are a great example of work that takes innovative approaches to developing new therapies for a wide variety of diseases.”

These awards are all for early-stage research projects, ones we hope will be successful and eventually move into clinical trials. One project approved yesterday is already in a clinical trial. Capricor Therapeutics was awarded $3.4 million to complete a combined Phase 1/2 clinical trial treating heart failure associated with Duchenne muscular dystrophy with its cardiosphere stem cell technology.  This same Capricor technology is being used in an ongoing CIRM-funded trial which aims to heal the scarring that occurs after a heart attack.

Duchenne muscular dystrophy (DMD) is a genetic disorder that is marked by progressive muscle degeneration and weakness. The symptoms usually start in early childhood, between ages 3 and 5, and the vast majority of cases are in boys. As the disease progresses it leads to heart failure, which typically leads to death before age 40.

The Capricor clinical trial hopes to treat that aspect of DMD, one that currently has no effective treatment.

As our President and CEO Randy Mills said in our news release:

Randy Mills, Stem Cell Agency President & CEO

Randy Mills, Stem Cell Agency President & CEO

“There can be nothing worse than for a parent to watch their child slowly lose a fight against a deadly disease. Many of the programs we are funding today are focused on helping find treatments for diseases that affect children, often in infancy. Because many of these diseases are rare there are limited treatment options for them, which makes it all the more important for CIRM to focus on targeting these unmet medical needs.”

Speaking on Rare Disease Day (you can read our blog about that here) Massachusetts Senator Karen Spilka said that “Rare diseases impact over 30 Million patients and caregivers in the United States alone.”

Hopefully the steps that the CIRM Board took yesterday will ultimately help ease the struggles of some of those families.

Rare Disease Day, a chance to raise awareness and hope.

logo-rare-disease-day

Battling a deadly disease like cancer or Alzheimer’s is difficult; but battling a rare and deadly disease is doubly so. At least with common diseases there is a lot of research seeking to develop new treatments. With rare diseases there is often very little research, and so there are fewer options for treatment. Even just getting a diagnosis can be hard because most doctors may never have heard about, let alone seen, a case of a disease that only affects a few thousand individuals.

That’s why the last day of February, every year, has been designated Rare Disease Day.  It’s a time to raise awareness amongst the public, researchers, health  professionals and policy makers about the impact these diseases have on the lives of those affected by them. This means not just the individual with the problem, but their family and friends too.

There are nearly 7,000 diseases in the U.S. that are considered rare, meaning they affect fewer than 200,000 people at any given time.

No numbers no money

The reason why so many of these diseases have so few treatment options is obvious. With diseases that affect large numbers of people a new treatment or cure stands to make the company behind it a lot of money. With diseases that affect very small numbers of people the chances of seeing any return on investment are equally small.

Fortunately at CIRM we don’t have to worry about making a profit, all we are concerned with is accelerating stem cell treatments to patients with unmet medical needs. And in the case of people with rare diseases, those needs are almost invariably unmet.

That’s why over the years we have invested heavily in diseases that are often overlooked because they affect relatively small numbers of people. In fact right now we are funding clinical trials in several of these including sickle cell anemia, retinitis pigmentosa and chronic granulomatous disease. We are also funding work in conditions like Huntington’s disease, ALS or Lou Gehrig’s disease, and SCID or “bubble baby” disease.

Focus on the people

As in everything we do our involvement is not just about funding research – important as that is – it’s also about engaging with the people most affected by these diseases, the patient advocate community. Patient advocates help us in several ways:

  • Collaborating with us and other key stakeholders to try and change the way the Food and Drug Administration (FDA) works. Our goal is to create an easier and faster, but no less safe, method of approving the most promising stem cell therapies for clinical trial. With so few available treatments for rare diseases having a smoother route to a clinical trial will benefit these communities.
  • Spreading the word to researchers and companies about CIRM 2.0, our new, faster and more streamlined funding opportunities to help us move the most promising therapies along as fast as possible. The good news is that this means anyone, anywhere can apply for funding. We don’t care how many people are affected by a disease, we only care about the quality of the proposed research project that could help them.
  • Recruiting Patient Advocates to our Clinical Advisory Panels (CAPs), teams that we assign to each project in a clinical trial to help guide and inform the researchers at every stage of their work. This not only gives each project the best possible chance of succeeding but it also helps the team stay focused on the mission, of saving, and changing, people’s lives.
  • Helping us recruit patients for clinical trials. The inability to recruit and retain enough patients to meet a project’s enrollment requirements is one of the biggest reasons many clinical trials fail. This is particularly problematic for rare diseases. By using Patient Advocates to increase our ability to enroll and retain patients we will increase the likelihood a clinical trial is able to succeed.

Organizing to fight back

There are some great organizations supporting and advocating on behalf of families affected by rare diseases, such as the EveryLife Foundation  and the National Organization for Rare Diseases (NORD).  They are working hard to raise awareness about these diseases, to get funding to do research, and to clear away some of the regulatory hurdles researchers face in being able to move the most promising therapies out of the lab and into clinical trials where they can be tested on people.

For the individuals and families affected by conditions like beta thalassemia and muscular dystrophy – potentially fatal genetic disorders – every day is Rare Disease Day. They live with the reality of these problems every single day. That’s why we are committed to working hard every single day, to find a treatment that can help them and their loved ones.

While You Were Away: Gene Editing Treats Mice with Duchenne Muscular Dystrophy

Welcome back everyone! I hope you enjoyed your holiday and are looking forward to an exciting new year. My favorite thing about coming back from vacation is to see what cool new science was published. Because as you know, science doesn’t take a vacation!

As I was reading over the news for this past week, one particular story stood out. On New Year’s Eve, Science magazine published three articles (here, here, here) simultaneously that successfully used CRISPR/Cas9 gene editing to treat mice that have Duchenne muscular dystrophy (DMD).

DMD is a rare, genetic disease that affects approximately 1 in 3,600 boys in the US. It’s caused by a mutation in the dystrophin gene, which generates a protein that is essential for normal muscle function. DMD causes the body’s muscles to weaken and degenerate, leaving patients deformed and unable to move. It’s a progressive disease, and the average life expectancy is around 25 years. Though there are treatments that help prolong or control the onset of symptoms, there is no cure for DMD.

Three studies use CRISPR to treat DMD in mice

For those suffering from this debilitating disease, there is hope for a new therapy – a gene therapy that is. Three groups from UT Southwestern, Harvard, and Duke, used the CRISPR gene editing method to remove and correct the mutation in the dystrophin gene in mice with DMD. All three used a safe viral delivery method to transport the CRISPR/Cas9 gene editing complex to the proper location on the dystrophin gene in the mouse genome. There, the complex was able to cut out the mutated section of DNA and paste together a version of the gene that could produce a functional dystrophin protein.

Dystrophin protein (green) in healthy heart muscle (left), absent in DMD mice (center), and partially restored in DMD mice treated with CRISPR/Cas9 (right). (Nelson et al., 2015)

Dystrophin protein (green) in healthy heart muscle (left), absent in DMD mice (center), and partially restored in DMD mice treated with CRISPR/Cas9 (right). (Nelson et al., 2015)

This technique was tested in newly born mice as well as in adult mice by injecting the virus into the mouse circulatory system (so that the gene editing could happen everywhere) or into specific areas like the leg muscle to target muscle cells and stem cells. After the gene editing treatment, all three studies found restored expression of the dystrophin protein in heart and skeletal muscle tissue, which are the main tissues affected in DMD. They were also able to measure improved muscle function and strength in the animals.

This is really exciting news for the DMD field, which has been waiting patiently for an approved therapy. Currently, two clinical trials are underway by BioMarin and Sarepta Therapeutics, but the future of these drugs is uncertain. A gene therapy that could offer a “one-time cure” would certainly be a more attractive option for these patients.

Charles Gersbach, Duke University

Charles Gersbach, Duke University

It’s important to note that none of these gene editing studies reported a complete cure. However, the results are still very promising. Charles Gersbach, senior author on the Duke study, commented, “There’s a ton of room for optimization of these approaches.”

Strong media coverage of DMD studies

The implications of these studies are potentially huge and suitably, these studies were covered by prominent news outlets like Science News, STAT News, The Scientist, and The New York Times.

What I like about the news coverage on the DMD studies is that the results and implications aren’t over hyped. All of the articles mention the promise of this research, but also mention that more work needs to be done in mice and larger animals before gene therapy can be applied to human DMD patients. The words “safe” or “safety” was used in each article, which signals to me that both the science and media worlds understand the importance of testing promising therapies rigorously before attempting in humans on a larger scale.

However, it does seem that CRISPR gene editing for DMD could reach clinical trials in the next few years. Charles Gersbach told STATnews that he could see human clinical trials using this technology in a few years after scientists properly test its safety. He also mentioned that they first will need to understand “how the human immune system will react to delivery of  the CRISPR complex within the body.” He went on, “The hope for gene editing is that if we do this right, we will only need to do one treatment. This method, if proven safe, could be applied to patients in the foreseeable future.”

Eric Olson, UT Southwestern

Eric Olson, UT Southwestern

Eric Olson, senior author on the UT Southwestern study, had a similar opinion, “To launch a clinical trial, we need to scale up, improve efficiency and assess safety. I think within a few years, those issues can be addressed.”

 


Related Links: