This guest blog is reposted with permission from Signals Blog, published by the Center for Commercialization of Regenerative Medicine (CCRM) in Canada.
With the extensive exploitation of regenerative medicine through the marketing and selling of unapproved stem cell “therapies” online, it was refreshing to hear an update about clinical trials for a legitimate stem cell therapy at the Till & McCulloch Meetings (TMM) in Canada earlier this month.

Dr. Jane Lebkowski, of Asterias, speaking at TMM 2017
Dr. Jane Lebkowski, President of R&D and Chief Scientific Officer at Asterias Biotherapeutics Inc. shared updates from their SCiStar study. This California-based company is currently in an open-label, single-arm Phase 1/2a clinical trial for testing the safety and efficacy of treating several types of spinal cord injuries (SCI) with AST-OPC1s – a type of brain cell called an oligodendrocyte progenitor cell, which they derived from pluripotent stem cells. Earlier this year they reported promising safety results in their first two cohorts of patients and clearance to proceed into additional patients.
Asterias uses a cryopreserved human ESC (embryonic stem cell) line to derive their AST-OPC1s, which they report are a non-homogenous population containing mostly OPCs and some neural progenitor cells. Importantly, they do not observe evidence that any ESCs remain in their differentiated cultures.
Their clinical trial is operating off the heels of extensive nonclinical safety and efficacy studies in over 28 different animal studies in >3,000 rodents and pigs with a unilateral contusion SCI model, as well as data from the first ever human clinical trial with human ESC-derived products previously conducted by Geron.
In their last non-clinical animal model studies of cervical (neck) and thoracic (back) SCI, Asterias showed that as long as they inject cells within the first 30 days of injury they see a persistent reduction in cavity formation at the injury site. They also saw myelination (growth of a protective, insulating sheath around nerve extensions) of nerve cells when AST-OPC1s were injected into myelin-free Shiverer mice, and increased vascularization (blood vessel growth) of injured tissue that persists to nine months post-transplantation. They also have in vitro data to suggest that the injected cells can secrete neurotrophic factors. Importantly, they saw behavioural improvements in their animal models that include “increases in running speed, right forelimb stride length, right forelimb maximal longitudinal deviation, and right rear stride frequency.”
In her talk at TMM, Dr. Lebkowski gave some exciting details about the company’s most recent clinical study. They’ve been delivering their AST-OPC1s to 18-69 year-old patients with C4-C7 spinal cord injury at multiple doses: a low dose of about two million cells and medium at 10 million cells. They give a single injection of either two million, 10 million, or 20 million AST-OPC1s within 21 to 42 days of injury. They have results from patients in the first two cohorts so far, and reported that both two and 10 million cell doses appeared safe 12 months after administration.
Excitingly, patients who received 10 million cells showed signs of functional improvements (in their movement) that have so far persisted up to 12 months after the injection – an improvement of 12.3% on their motor test, equivalent to two full motor scores. This translates to increased arm and hand function and improved independence in activities of daily living at 12 months. Given that these patients were requiring over six hours of home care a day, even small improvements in motor function can have huge impact on their quality of life and independence.
The research community is still waiting to hear preliminary results from the third cohort of patients who received 20 million cells. Asterias is currently recruiting more patients, including those with incomplete spinal cord injury. These studies will be used to inform a larger, double-blind controlled clinical trial that will include more extensive tests of the functional and physiological effects of injecting AST-OPC1s.
This promising work has not been an easy road. It has taken over a decade of thorough and challenging research. The current work was made possible by a $14.3 million investment from the California Institute for Regenerative Medicine, and Dr. Lebkowski estimates that they have spent over $125 million U.S. for this trial. While Asterias covers non-routine medical costs for the patients who enroll, it will take time and more support from government institutions to further test this treatment and, if proven safe and effective, make it financially accessible to all eligible patients.
Returning to my first point about unapproved stem cell therapies, please engage in conversations about “hype and hope” of stem cell therapies with members of the general public, and encourage them to ask their family health team and a scientist before enrolling in any clinical trials advertised online. There are other ways you can keep our industry “honest” here. For more plain language resources on the current status of stem cell therapies, please see here and here.
Samantha Yammine
Samantha is a PhD Candidate studying neural stem cell biology in Dr. Derek van der Kooy’s lab at the University of Toronto. She is also an avid science communicator who uses social media to make science more accessible to everyone. For your daily dose of the fun and trendy side of science, find her online as @SamanthaZY on Twitter and @Science.Sam on Instagram.