Physicians and patient advocates on the front lines of the fight for a more equitable health system

Over the last year there has been increasing awareness of the inequalities in the American healthcare system. At every level there is evidence of bias, discrimination and unequal access to the best care. Sometimes unequal access to any care. That is, hopefully, changing but only if the new awareness is matched with action.

At the recent World Stem Cell Summit CIRM helped pull together a panel of physicians and patient advocates who have been leading the charge for change for years. The panel was called ‘Addressing Disparities, Promoting Equity and Inclusion in Clinical Research.’

The panelists include:

This image has an empty alt attribute; its file name is ysabel-duron.jpeg
Ysabel Duron – Founder of The Latino Cancer Institute & CIRM Board member
Adrienne Shapiro – sickle cell disease patient advocate, Founder of Axis Advocacy – Sickle Cell Disease support and advocacy group
Dr. Leah Ke‘ala‘aumoe Dowsett – Clinical geneticist, serves on hospital DEI committee, Board member Association of Native Hawaiian Physicians
Dr. Nathan Chomilo – Co-Founder, Minnesota Doctors for Health Equity and head of the Minnesota COVID Vaccine Equity Program

The conversation they had was informative, illuminating and fascinating. But it didn’t sugar coat where we are, and the hard work ahead of us to get to where we need to be.

Enjoy the event, with apologies for the inept cameo appearance by me at the beginning of the video. Technology clearly isn’t my forte.

Alpha clinics and a new framework for accelerating stem cell treatments

IMG_1215

Last week, at the World Stem Cell Summit in Miami, CIRM took part in a panel discussion about the role and importance of Alpha Clinics in not just delivering stem cell therapies, but in helping create a new, more collaborative approach to medicine. The Alpha Clinic concept is to create  a network of top medical centers that specialize in delivering stem cell clinical trials to patients.

The panel was moderated by Dr. Tony Atala, Director of the Wake Forest Institute for Regenerative Medicine. He said the term Alpha Clinic came from CIRM and the Alpha Stem Cell Clinic Network that we helped create. That network now has five specialist health care centers that deliver stem cell therapies to patients: UC San Diego, UCLA/UC Irvine, City of Hope, UC Davis, and  UCSF/Children’s Hospital Oakland.

This is a snapshot of that conversation.

Alpha Clinics Advancing Stem Cell Trials

Dr. Maria Millan, CIRM’s President & CEO:

“The idea behind the Alpha Stem Cell Clinic Network is that CIRM is in the business of accelerating treatments to patients with unmet medical needs. We fund research from the earliest discovery stage to clinical trials. What was anticipated is that, if the goal is to get these discoveries into the clinics then we’ll need a specific set of expertise and talents to deliver those treatments safely and effectively, to gather data from those trials and move the field forward. So, we set out to create a learning network, a sharing network and a network that is more than the sum of its parts.”

Dr. Joshua Hare,  Interdisciplinary Stem Cell Institute, University of Miami, said that idea of collaboration is critical to advancing the field:

 

“What we learned is that having the Alpha Stem Cell Clinic concept helps investigators in other areas learn from what earlier researchers have done, helping accelerate their work.

For example, we have had a lot of experience in working with rare diseases and we can use the experience we have in treating one disease area in working in others. This shared experience can help us develop deeper understanding in terms of delivering therapies and dosing.”

Susan Solomon, CEO New York Stem Cell Foundation Research Institute. NYSCF has several clinical trials underway. She says in the beginning it was hard finding reputable clinics that could deliver these potentially ground breaking but still experimental therapies:

 

“My motivation was born out of my own frustration at the poor choices we had in dealing with some devastating diseases, so in order to move things ahead we had to have an alpha clinic that is not just doing clinical trials but is working to overcome obstacles in the field.”

Greg Simon represented the, Biden Cancer Initiative, whose  mission is to develop and drive implementation of solutions to accelerate progress in cancer prevention, detection, diagnosis, research, and care, and to reduce disparities in cancer outcomes. He says part of the problem is that people think there are systems already in place that promote collaboration and cooperation, but that’s not really the case.  

 

“In the Cancer Moonshot and the Biden Cancer Initiative we are trying to create the cancer research initiative that people think we already have. People think doctors share knowledge. They don’t. People think they can just sign up for clinical trials. They can’t. People think there are standards for describing a cancer. There aren’t. So, all the things you think you know about the science behind cancer are wrong. We don’t have the system people think is in place. But we want to create that.

If we are going to have a unified system we need common standards through cancer research, shared knowledge, and clinical trial reforms. All my professional career it was considered unethical to refer to a clinical trial as a treatment, it was research. That’s no longer the case. Many people are now told this is your last best hope for treatment and it’s changed the way people think about clinical trials.”

The Process

Maria Millan says we are seeing these kinds of change – more collaboration, more transparency –  taking place across the board:

“We see the research in academic institutions that then moved into small companies that are now being approved by the FDA. Academic centers, in conjunction with industry partners, are helping create networks and connections that advance therapies.

This gives us the opportunity to have clinical programs and dialogues about how we can get better, how we can create a more uniform, standard approach that helps us learn from each trial and develop common standards that investigators know have to be in place.

Within the CIRM Alpha Stem Cell Clinic Network the teams coming in can access what we have pulled together already – a database of 20 million patients, a single IRB approval, so that if a cliinical trial is approved for one Alpha Clinic it can also be offered at another.”

Greg Simon says to see the changes really take hold we need to ensure this idea of collaboration starts at the very beginning of the chain:

“If we don’t have a system of basic research where people share data, where people are rewarded for sharing data, journals that don’t lock up the data behind a paywall. If we don’t have that system, we don’t have the ability to move therapies along as quickly as we could.

“Nobody wants to be the last person to die from a cancer that someone figured out a treatment for a year earlier. It’s not that the science is so hard, or the diseases are so hard, it the way we approach them that’s so hard. How do we create the right system?”

More may not necessarily be better

Susan Solomon:

“There are tremendous number of advances moving to the clinic, but I am concerned about the need for more sharing and the sheer number of clinical trials. We have to be smart about how we do our work. There is some low hanging fruit for some clinical trials in the cancer area, but you have to be really careful.”

Greg Simon

“We have too many bad trials, we don’t need more, we need better quality trials.

We have made a lot of progress in cancer. I’m a CLL survivor and had zero problems with the treatment and everything went well.

We have pediatric cancer therapies that turned survival from 10 % to 80%. But the question is why doesn’t more progress happen. We tend to get stuck in a way of thinking and don’t question why it has to be that way. We think of funding because that’s the way funding cycles work, the NIH issues grants every year, so we think about research on a yearly basis. We need to change the cycle.”

Maria Millan says CIRM takes a two pronged approach to improving things, renovating and creating:

“We renovate when we know there are things already in place that can be improved and made better; and we create if there’s nothing there and it needs to be created. We want to be as efficient as we can and not waste time and resources.”

She ended by saying one of the most exciting things today is that the discussion now has moved to how we are going to cover this for patients. Greg Simon couldn’t agree more.

“The biggest predictor of survivability of cancer is health insurance. We need to do more than just develop treatments. We need to have a system that enables people to get access to these therapies.”

‘Right To Try’ laws called ‘Right To Beg’ by Stem Cell Advocates

In recent years, ‘Right to Try’ laws have spread rapidly across the US, getting approved in 32 states, with at least three more states trying to pass their own versions.

The organization behind the laws says they serve a simple purpose:

‘Right To Try’ allows terminally ill Americans to try medicines that have passed Phase 1 of the FDA approval process and remain in clinical trials but are not yet on pharmacy shelves. ‘Right To Try’ expands access to potentially life-saving treatments years before patients would normally be able to access them.”

That certainly sounds like a worthy goal; one most people could get behind. And that’s what is happening. Most ‘Right To Try’ laws are passed with almost unanimous bi-partisan support at the state level.

Beth Roxland

Beth Roxland

But that’s not the view of Beth Roxland, an attorney and health policy advisor with an extensive history in both regenerative medicine and bioethics. At the recent World Stem Cell Summit Roxland said ‘Right To Try’ laws are deceptive:

“These are not patient friendly but are actually patient unfriendly and could do harm to patients. The problem is that they are pretending to do something that isn’t being done. It gives patients a sense that they can get access to a treatment, but they don’t have the rights they think they do. This is a right to ask, not a right to get.”

Roxland says the bills in all 32 states are almost all identical, and use the same cookie-cutter language from the Goldwater Institute – the libertarian organization that is promoting these laws. And she says these laws have one major flaw:

“There is no actual right provided in the bill. The only right is the right to try and save your life, “by requesting” from a manufacturer a chance to try the therapy. The manufacturer doesn’t have to do anything; they aren’t obliged to comply. The bills don’t help; they give people false hopes.”

Roxland says there isn’t one substantiated case where a pharmaceutical company has provided access to a therapy solely because of a ‘Right To Try’ law.

However, Starlee Coleman, the Vice President for Communications at the Goldwater Institute, says that’s not true. She says Dr. Ebrahim Delpassand, a cancer specialist in Texas, has testified before Congress that he has treated dozens of patients under his state’s ‘Right To Try’ law. You can see a video of Dr. Delpassand here.

Coleman says ;

“We think the promise of ‘Right To Try’ is self-evident. If one doctor alone can treat 80 patients in one fell swoop, but the FDA can only manage to get 1200 people through its expanded access program each year, we think the potential to help patients is significant.”

Other speakers at the panel presentation at the World Stem Cell Summit said these laws can at the very least play an important role in at least raising the issue of the need for people battling terminal illnesses to have access to experimental therapies. Roxland agreed it was important to have that conversation but she pointed out that what often gets lost in the conversation is that these laws can have hidden costs.

  • 13 states may withdraw hospice eligibility to people who gain access to an early or experimental intervention
  • 4 states may withdraw home care
  • 6 states say patients taking part in these therapies may lose their insurance
  • Several states allow insurers to deny coverage for conditions that may arise from patients getting access to these therapies
  • 30 states say the companies can charge the patients for access to these therapies

Roxland says the motives behind the ‘Right To Try’ laws may be worthy but the effect is misleading, and diverts attention from efforts to create the kind of reforms that would have real benefits for patients.

Here is a blog we wrote on the same topic last year.

Why Goldilocks could provide the answer to changing the way FDA regulates stem cells

img_1077

Panel on FDA regulation at World Stem Cell Summit

One of the hottest topics of the past year in regenerative medicine has been the discussion about the need for regulatory reform at the Food and Drug Administration (FDA) so it’s no surprise that topic was the subject of the first main panel discussion at the 2016 World Stem Cell Summit in West Palm Beach, Florida.

The panel, titled ‘FDA Oversight in Regenerative Medicine: What are the Options to Accelerating Translation’, kicked off with Celia Witten, Deputy Director of the Center for Biologics Evaluation and Research at the FDA. She laid out all the new steps that the agency is implementing to try and be more responsive to the needs of researchers and patients.

Perils facing pioneers

Martin McGlynn, the former CEO of StemCells Inc. was up next and he wasted little time listing the companies that had once been considered pioneers in the field only to fail for a variety of reasons. He said one of the big problems is that translational efforts, moving from a good idea to a clinical trial, take too long, saying 15 – 20 years is not unusual and that Big Pharma and strategic investors won’t invest until they see strong Phase 2 study results.

“We need to do great science and design and conduct great clinical trials to advance this field but we also have to come up with a sustainable business model to make this happen.”

A good start

He called the 21st Century Cures Act, which the US Senate approved yesterday, a good start but says many of the challenges won’t be helped by some of the new provisions:

“Many sponsors and companies don’t make it out of open label early studies, so the existence of an accelerated pathway or some of the other enabling tools included in the act will come too late for these groups.”

McGlynn warned that if we don’t take further steps, we risk falling behind the rest of the world where companies are buying up struggling US ventures:

“Many non-USA companies in Japan and China and Australia are quicker to recognize the value of many of the products and approaches that struggle here in the US.”

Too much, too little, just right

Marc Scheineson was the final speaker. He heads the food and drug law practice at Washington, DC law firm Alston & Bird and is a former Associate Commissioner for Legislative Affairs at the FDA. He began his presentation with what he said are the scariest words in the English language: “I‘m a lawyer from Washington D.C. and I’m here to help you.”

Scheineson says part of the problem is that the FDA was created long before cell therapy was possible and so it is struggling to fit its more traditional drug approval framework around stem cell therapies. As a result, this has led to completely separate regulatory processes for the transplantation of human organs and blood vessels, or for the use of whole blood or blood components.

He says it’s like the fable of Goldilocks and the Three Bears. Some of the regulation is too hard- resulting in a lengthy regulatory process that takes years to complete and costs billions of dollars – and some of the regulation is too soft allowing clinics to open up around the US offering unproven therapies. He says we need a Goldilocks approach that blends the two into regulations that are just right.

Time to take a second step

Scheineson agreed with McGlynn that the 21st Century Cures Act is a good start but it’s not enough.  He says it still relies heavily on the use of traditional criteria to regulate stem cells, and also leaves much of the interpretation of the Act to the discretion of the FDA.

“It’s a first step, an experiment to see if we can break the logjam and see if we can move things to an affordable BLA (The Biologics License Application is needed to be able to market a product once it’s approved by the FDA). But make no mistake, a cell therapy revolution is underway and I believe the FDA should seize the opportunity to promote innovation and not defensively protect the “status quo”.

 

 

Stem cell stories that caught our eye: Horse patients, Brain cancer stem cells, and a Bony Heart

Horsing around at the World Stem Cell Summit
The World Stem Cell Summit (WSCS) is coming up very shortly (December 6-9) in lovely downtown West Palm Beach, Florida. And this year it has an added attraction; horses.

For my money the WSCS is the most enjoyable of the many conferences held around the US focusing on stem cells. Most conferences have either scientists or patients and patient advocates. This brings them both together creating an event that highlights the science, the people doing it, and the people who hope to benefit from it.

Muybridge_race_horse_animated.gif

Eadweard Muybridge’s Galloping Horse
Image: Wikimedia Commons

And this year it’s not just about people, it’s also about horses. For the first time the event will feature the Equine World Stem Cell Summit. This makes sense on so many levels. Animals, large and small, have always been an important element in advancing scientific research, enabling us to test treatments and make sure they are safe before trying them out on people.

But horses are also athletes and sports has always been a powerful force in accelerating research. When you think about the “Sport of Kings” and how much money is involved in breeding and racing horses it’s not surprising that rich owners are always looking for new treatments that can help their thoroughbreds recover from injuries.

And if they help repair damaged bones and tendons in thoroughbreds, who’s to say those techniques and that research couldn’t help the rest of us.

Loss of gene allows cancer stem cells to invade the brain
A fundamental property of stem cells is their ability to self-renew and make unlimited copies of themselves. That ability is great for repairing the body but in the case of cancer stem cells, it is thought to be responsible for the uncontrolled, lethal growth of tumors.

Both stem cells and cancer stem cells rely on special cellular neighborhoods, or “niches”, to support their function. Outside of those niches, the cells don’t survive well. But cancer stem cells somehow overcome this barrier which allows them to spread and do damage to whole organs.

245px-glioblastoma_-_mr_sagittal_with_contrast

Brain MRI showing glioblastoma tumor
Image: Wikimedia Commons

A study this week at The University of Texas MD Anderson Cancer Center zeroed in on the gene QK1 that, when deleted in mice, provides cancer stem cells in the brain the ability to thrive outside their niches.  They team also showed that the loss of the gene slowed a cell process called endocytosis, which normally acts to break down and recycle protein receptors on the cell surface. Those receptors are critical for the cancer stem cell’s self-renew function. So by blocking endocytosis, the gene deletion leads to an accumulation of receptors on the cell surface and in turn that boosts the cancer stem cells’ ability to divide and grow outside of its niche.

In a university press release picked up by Science Daily, team lead Jian Hu talked about exploiting this result to find new ways to defeat glioblastoma, the deadliest form of brain cancer:

“This study may lead to cancer therapeutic opportunities by targeting the mechanisms involved in maintaining cancer stem cells. Although loss of QKI allows glioma stem cells to thrive, it also renders certain vulnerabilities to the cancer cells. We hope to design new therapies to target these.”

CIRM-funded scientists uncover mystery of bone growth in the heart
Calcium helps keep our bones strong but a build-up of the mineral in our soft tissues, like the heart, is nothing but bad news for our health. The origins of this abnormal process called ectopic calcification have been a mystery to scientists because the cells responsible for forming bone and secreting calcium, called osteoblasts, are not found in the heart. So where is the calcium coming from?

_RwqnX.gif

Bone-forming osteoblasts. They’re bad news when found in the heart.
Image: Amgen

This week, a CIRM-funded team at UCLA found the answer: cardiac fibroblasts. The researchers suspected that this most abundant cell in the heart was the culprit behind ectopic calcification. So, using some genetic engineering tricks, they were able to track cardiac fibroblasts with a red fluorescent tag inside mice after a heart injury.

Within a week or so after injury, the team observed that cardiac fibroblasts had clustered around the areas of calcium deposits in the heart. It turns out that those cardiac fibroblasts had taken on the properties of heart stem cells and then became bone-forming osteoblasts. To prove this finding, they took some of those cells and transplanted them into healthy mice. Sure enough, the injection sites where the cells were located began to accumulate calcium deposits.

A comparison of gene activity in these abnormal cells versus healthy cells identified a protein called EPPN1 whose levels were really elevated when these calcium deposits occurred. Blocking EPPN1 put a stop to the calcification in the heart. In a university press release, lead author Arjun Deb explained that this detective work may lead to long sought after therapies:

Everyone recognizes that calcification of the heart and blood vessels and kidneys is abnormal, but we haven’t had a single drug that can slow down or reverse calcification; our study points to some therapeutic targets.

Doing nothing is not OK: A call for change at the FDA

FDA-NotApprovedStampThe US Food and Drug Administration (FDA) is caught between a rock and a hard place. And CIRM is going to try and help them get out from under that.

As things stand today, if the FDA approves a therapy quickly and a patient later dies from it, then they are widely criticized. If they take a long time to approve a therapy and people die waiting for that treatment, then they are just as widely criticized.

So maybe it’s time to help them change that, by creating a new pathway that allows for a faster, more efficient, but equally safe, process of approving stem cell therapies.

This was a topic that CIRM’s President and CEO, Dr. Randy Mills, took on at last week’s World Stem Cell Summit. He highlighted our mission – accelerating stem cell therapies to patients with unmet medical needs – as the driving force behind everything we do, including regulatory reform:

“We have had the current FDA regulatory structure for cell therapy in place for 15 years, and in that 15 years not one stem cell therapy has been approved. The scoreboard is not lying, there’s a zero on it. Not one therapy has been approved. There is an issue here, we can’t ignore that fact and so we made it part of our proposed new Strategic Plan to try and remove this burden.

“There is an excessively long translational pathway to get an Investigational New Drug (IND) approval from the FDA (a necessary step to proceed with testing a therapy in a clinical trial). For non-cell therapies it takes 3-4 years to get an IND. For cell therapies it takes 6-8 years, twice as long.”

Mills says many potential therapies have been abandoned, or even stopped before they even got started, simply because the regulatory hurdles are so many and the costs so high.

“We are not anti-regulation, we are not anti-FDA, and we are not calling for the removal of rules and regulations around stem cell therapies, that would be bad for patients and research. These therapies have risks and we are not proposing any strategy that puts things on the market without any testing or safety data. But right now we are being so careful about safety to ensure patients are not put at risk while those same patients are dying from their disease.”

Chaohong Fan, MD, PhD, a Medical Officer at the FDA was in the audience and said the people at the FDA really want to help, that they feel it’s part of their mission.

Mills said he had no doubts that the people at the FDA are committed and passionate about what they do. He says it’s not that people at the FDA aren’t working, it’s that the process isn’t working, and needs to be transformed.

“At CIRM we are saying doing nothing is not OK. It’s not OK. So we are going to be working with patients and patient advocates, companies, researchers and the FDA to make change, to make it easier for patients to get access to the therapies they need.”

 

Why “Right to Try” laws are more feel good than do good

IMG_0771[4]

L to R: Don Gibbons, CIRM; Jeanne Loring; Beth Roxland; Aaron Levine

In the last few years some 24 states have approved so-called “Right to Try” laws. These are intended to give terminally ill patients faster and easier access to experimental therapies. But a panel of experts at the World Stem Cell Summit in Atlanta today said they are more symbolic than anything and do little to actually help patients get much-needed therapies.

The Right to Try laws are modeled after a federal law that allows “compassionate use” of experimental medications and lets doctors prescribe investigational medicines being safely used in early stage clinical trials.

Beth Roxland, a bioethicist with Johnson & Johnson, says the name of the law is misleading:

“If you look at the actual text of these laws they only say you have the right to “ask” for these drugs. That right already exists in federal law but neither federal law nor these Right to Try laws say you have the right to access.”

Aaron Levine from Georgia Tech says it’s also misleading to assume that just because a state passes a Right to Try law that it has any legal impact. He says state laws don’t over rule the Food and Drug Administration’s (FDA) regulation of this area and so the federal government would still have the authority to stop this kind of access.

But Levine says these laws are interesting in that they are indicative of the growing determination of patients and patient advocates to work around obstacles to access and have a bigger say in their own care.

One of the audience members, William Decker from Baylor College of Medicine, says that in Texas a law was recently crafted saying that as long as a potential therapy had gone through a Phase 1 safety trial it should be offered to the public and the public should be able to pay for it.

“If you know how clinical trials work you know you can get almost any schlock through a Phase 1 trial and the kinds of things that you can get to the public without any idea if they work often turn out to not be very useful. We saw this as an avenue to promote fraud, and the last thing you should be doing to a dying patient is take their money or divert their attention away from something that might help them.”

Decker and his colleagues argued before the Texas Legislature that potential therapies should at least have to go through a Phase 2 trial to make sure they were not only safe but also showed some benefit for patients. In the end Texas lawmakers rejected the Phase 2 idea but did say patients could not be charged for the therapy, and there could be no compensation from insurers or anyone else for the manufacturer of the therapy.

He says removing the financial benefits and incentives pretty much ensured that no company would offer patients a therapy under this law.

Jeanne Loring, a CIRM grantee from the Scripps Research Institute, says that likely won’t stop other clinics in other states:

“Some stem cell clinics are using adipose (stem cells derived from fat) therapy as an option for every disease imaginable and I’m sure some will take advantage of these laws to say it gives them the right to offer these to patients and the patients will pay for them directly. “

Roxland says that may already be happening:

“I think there is some evidence on the stem cell side that companies have popped up in states that have these laws, to make it easier to offer their therapies to patients.”

The panel agreed that in most cases these laws don’t give patients any rights they don’t already have, but do give the appearance of making access easier. They said it’s feel-good legislation, allowing people to feel they are doing something without actually doing anything.

Aaron Levine said that while some companies may try to take advantage of these laws, the most serious ones won’t:

 “Almost any legitimate company that wants an FDA approved product wouldn’t want to take advantage of these laws. It could put their product at risk. Most companies that need to work with the FDA have no incentive to go this route.”

 

 

Call to Action by FDA at World Stem Cell Summit

Califf

FDA Deputy Commissioner Dr. Robert Califf talking at the World Stem Cell Summit

The World Stem Cell Summit annual conference in Atlanta kicked off today with a clarion call from Dr. Robert Califf, the Deputy Commissioner for the Food and Drug Administration. He told the audience:

“We want you to accelerate translation to produce safe and effective therapies that can be delivered reliably”

It was a message that everyone in the room, scientists and patient advocates, would love to be able to comply with. The question of course is how do you do that in a way that puts the emphasis on both speed, to get the therapies to patients who need them, and safety, so you don’t put those patients at risk.

That’s quite a challenge considering that, as panel moderator Julie Allickson of Wake Forest Institute for Regenerative Medicine said:

“the estimate now is it costs $2.4 billion and up to ten years to take something to the clinic.”

Even if that dollar amount is higher than many think it would take to bring a stem cell therapy to a clinical trial it is an indication of the challenge the field faces.

Califf, who has only been at the FDA for 8 months, says that regenerative medicine is:

“not the only field exploding with scientific knowledge and seeing a future that’s very different from what we see today so it’s exciting but also an enormous challenge for the FDA. One of the real eye openers for me is to be at the FDA and hear about drugs that have been on the market for 45 years and we’re still learning about them.”

He says the first goal of the FDA has to be to protect the public, and that it’s hard to balance safety and innovation. “That’s an issue we struggle with every day.”

Califf was optimistic that the balance can be struck and progress can be made, but said that this can only truly be done if the patient is at the table as an active participant.

“Our national clinical research system is well intention but flawed. We need to have a new system that shares information right across the system and where patients are at the center. Patients should be driving the national research infrastructure. They are an essential part of change. It’s happening in Congress because they are hearing from constituents that this is what they want, a voice in the research being done that affects them.”

For the patients and patient advocates in the audience it was a welcome message. For years they have been calling for a louder voice in the research that affects them and their loved ones. Knowing they have a sympathetic ear in the FDA could be an encouraging sign that their voices are finally being heard.

We will be writing more as the conference unfolds so stay tuned!

 

 

 

A scientific conference we can all enjoy

Scientific conferences are fascinating events. You get a chance to mingle with some of the leading researchers and thinkers in the field, and to learn about the latest advances. But, to be honest, for those of us who don’t have a scientific background, they can also be a little bit intimidating.

That’s where the World Stem Cell Summit comes in. It’s an annual event that brings together researchers, companies, scientists and patient advocates to talk about the progress being made in stem cell research and to explore ways to advance the field even further, and faster by working together.

Changing the tone

The patient advocate role is a critical one here. It makes the voice of the patient a key element in every discussion and changes the tone of the event from talking about what is being done to or for patients, to what is being done with patients. It’s a small but tremendously important difference.

Dr. Evan Snyder, Director of the Stem Cells and Regenerative Medicine program at Sanford – Burnham Medical Research Institute captures that feel when he says:

“We’re looking forward to the valuable information-sharing opportunities and discussions that only occur when stem cell researchers, patient advocates, and representatives of many other stakeholder groups converge at the World Stem Cell Summit. Occasions like these help us advance our research on the basic biology of stem cells and spur the development of new, and more personalized, medical applications for this science.”

Because more than ten percent of those attending are patient advocates the talks are given at a level that someone without a science background can generally understand. The presentations are no less fascinating; they are just a lot more accessible.

Stephen Rose, the Chief Research Officer with the Foundation Fighting Blindness says it brings different groups together in a way other conferences usually don’t:

“Policy experts learned about researchers’ needs. Advocates learn about policy and legislation. It also brought ethical issues to the table, which is critical if we’re going to resolve them and keep the research moving forward.”

Researchers have a lot of opportunities throughout the year to meet with other scientists but patient advocates don’t, so the World Stem Cell Summit is a great chance for them to meet with their colleagues and counterparts from all over the US. It gives them a chance to share ideas, offer support and explore ways they can collaborate.

More than just a meeting

For many advocates who are focused on diseases that affect relatively small numbers of people these events are a great way to recharge their batteries and to remind themselves they are not alone in this fight.

If you are thinking about going to one conference this year, this is a great one to chose. This year the World Stem Cell Summit is being held December 10 – 12 in Atlanta, Georgia.

We’ll be there and we’d love to see you there too.

CRISPR cluster: How the media spotlight is focusing on gene editing tool

Illustration by Ashley Mackenzie: from New York Times Sunday Magazine

Illustration by Ashley Mackenzie: from New York Times Sunday Magazine

Getting in-depth stories about science in general, and regenerative medicine in particular, into the mainstream media is becoming increasingly hard these days. So when you get one major media outlet doing a really long, thoughtful piece about a potential game-changing gene-editing technology it’s good news. But when you get three major media outlets, all reporting on the same technology, all in the space of less than one week, and all devoting lots of words to the pieces, then it’s really a cause for celebration.

That’s what happened in the last few days with features on the gene editing technology CRISPR in the New York Times Sunday Magazine,  the New Yorker Magazine,  and STAT, a new online health and life-sciences publication produced by the Boston Globe.

Making the story personal

Feng Zhang: photo courtesy of the Broad Institute

Feng Zhang: photo courtesy of the Broad Institute

Each takes a similar approach, focusing on the individuals behind the new approach – Feng Zhang at Harvard/MIT and Jennifer Doudna at the University of California, Berkeley. The fact that the two are involved in a fight over patent rights for the process adds an extra element of friction to a story that already has more than its share of drama.

In the New Yorker, Michael Specter neatly summarizes why so many people are excited about this technology:

“With CRISPR, scientists can change, delete, and replace genes in any animal, including us. Working mostly with mice, researchers have already deployed the tool to correct the genetic errors responsible for sickle-cell anemia, muscular dystrophy, and the fundamental defect associated with cystic fibrosis. One group has replaced a mutation that causes cataracts; another has destroyed receptors that H.I.V. uses to infiltrate our immune system.”

Jennifer Doudna: Photo courtesy of iPSCell.com

Jennifer Doudna: Photo courtesy of iPSCell.com

Sharon Begley in STAT, writes that this discovery could bring cures to some of the deadliest health problems we face, from cancer to Alzheimer’s, but that it also comes with big ethical questions hanging over it:

“He (Zhang) has touched off a global furor over the possibility that a genetics tool he developed could usher in a dystopian age of designer babies.”

Jennifer Kahn in the New York Times Sunday Magazine follows up on that thought, writing about Doudna:

“But she also notes that the prospect of editing embryos so that they don’t carry disease-causing genes goes to the heart of CRISPR’s potential. She has received email from young women with the BRCA breast-cancer mutation, asking whether CRISPR could keep them from passing that mutation on to their children — not by selecting embryos in vitro, but by removing the mutation from the child’s genetic code altogether. ‘‘So at some point, you have to ask: What if we could rid a person’s germ line, and all their future generations, of that risk?’’ Doudna observed. ‘‘When does one risk outweigh another?’’

Each article makes for fascinating reading. Collectively they highlight why CRISPR is such a hot topic, on so many different levels, in science right now.

The topic is going to be the focus of a conference, featuring scientists from the US, Europe and China, being held at the National Academy of Sciences in Washington DC the first week of December.

CIRM is also getting involved in the debate and is holding a science-policy workshop on February 4th, 2016 in Los Angeles to consider the future use of genome editing technologies in studies sponsored by CIRM.