How quitting smoking helps your lungs regenerate; a discovery could lead to new ways to repair damaged lungs; and encouraging news in a stroke recovery trial

Photo courtesy Lindsay Fox

Smoking is one of the leading causes of preventable death not just in the US, but worldwide. According to the US Centers for Disease Control and Prevention tobacco causes an estimated seven million deaths around the world, every single year. And for every person who dies, another 30 live with a serious smoking-related illness. Clearly quitting is a good idea. Now a new study adds even more incentive to do just that.

Scientists at the Welcome Trust Sanger Institute and University College London in the UK, found that quitting smoking did more than just stop further damage to the lungs. They found that cells in the lining of the lungs that were able to avoid being damaged, were able to regrow and repopulate the lung, helping repair damaged areas.

In an article in Science Daily Dr Peter Campbell, a joint senior author of the study, said: “People who have smoked heavily for 30, 40 or more years often say to me that it’s too late to stop smoking — the damage is already done. What is so exciting about our study is that it shows that it’s never too late to quit — some of the people in our study had smoked more than 15,000 packs of cigarettes over their life, but within a few years of quitting many of the cells lining their airways showed no evidence of damage from tobacco.”

The study is published in the journal Nature.

Researchers at UCLA have also made a discovery that could help people with lung disease.

They examined the lungs of people with cancer and compared them to the lungs of healthy people. They were able to identify a group of molecules, called the Wnt/beta-catenin signaling pathway, that appear to influence the activity of stem cells that are key to maintaining healthy lungs. Too much activity can tilt the balance away from healthy lungs to ones with mutations that are more prone to developing tumors.

In a news release Dr. Brigitte Gomperts, the lead author of the study, says although this work has only been done in mice so far it has tremendous potential: “We think this could help us develop a new therapy that promotes airway health. This could not only inform the treatment of lung cancer, but help prevent its progression in the first place.”

The study is published in the journal Cell Reports.

CIRM has funded some of Dr. Gomperts earlier work in this area.

And there’s encouraging news for people trying to recover from a stroke. Results from ReNeuron’s Phase 2 clinical trial show the therapy appears to help people who have experienced some level of disability following a stroke.

ReNeuron says its CTX therapy – made from neural stem cells – was given to 23 people who had moderate to severe disability resulting from an ischemic stroke. The patients were, on average, seven months post stroke.

In the study, published in the Journal of Neurology, Neurosurgery & Psychiatry, researchers used the Modified Rankin Scale (mRS), a measure of disability and dependence to assess the impact of the therapy. The biggest improvements were seen in a group of 14 patients who had limited movement of one arm.

  • 38.5% experienced at least a one-point improvement on mRS six months after being treated.
  • 50% experienced a one-point improvement 12 months after being treated.

If that doesn’t seem like a big improvement, then consider this. Moving from an mRS 3 to 2 means that a person with a stroke regains their ability to live independently.

The therapy is now being tested in a larger patient group in the PISCES III clinical trial.

Knocking out sexually transmitted disease with stem cells and CRISPR gene editing

When used in tandem, stem cells and gene editing make a powerful pair in the development of cell therapies for genetic diseases like sickle cell anemia and bubble baby disease. But the applications of these cutting-edge technologies go well beyond cell therapies.

This week, researchers at the Wellcome Trust Sanger Institute in the UK and the University of British Columbia (UBC) in Canada, report their use of induced pluripotent stem cells (iPSCs) and the CRISPR gene editing to better understand chlamydia, a very common sexually transmitted disease. And in the process, the researchers gained insights for developing new drug treatments.

BodyChlamydia

Human macrophage, a type of white blood cell, interacting with a Chlamydia trachomatis bacteria cell. Image: Sanger Institute / Genome Research Limited

Chlamydia is caused by infection with the bacteria Chlamydia trachomatis. According to the Centers for Disease Control (CDC), there were over 1.5 million cases of Chlamydia reported in the U.S. in 2015. And there are thought to be almost 3 million new cases each year. Men with Chlamydia usually do not face many health issues. Women, on the other hand, can suffer serious health complications like pelvic inflammatory disease and infertility.

Although it’s easily treatable with antibiotics, the disease often goes unnoticed because infected people may not show symptoms. And because of the rising fear of antibiotic-resistant bacteria, there’s a need to develop new types of drugs to treat Chlamydia.

To tackle this challenge, the research teams focused first on better understanding how the bacteria infects the human immune system. As first author Dr. Amy Yeung from the Wellcome Trust Sanger Institute explained in a press release, researchers knew they were up against difficult to treat foe:

picture-ay1

Amy Yeung

“Chlamydia is tricky to study because it can permeate and hide in macrophages [a type of white blood cell] where it is difficult to reach with antibiotics. Inside the macrophage, one or two chlamydia cells can replicate into hundreds in just a day or two, before bursting out to spread the infection.”

In the study, published in Nature Communications, the teams chose to examine human macrophages derived from iPSCs. This decision had a few advantages over previous studies.  Most Chlamydia studies up until this point had either used macrophages from mice, which don’t always accurately reflect what’s going on in the human immune system, or human macrophage cell lines, which have genetic abnormalities that allow them to divide indefinitely.

With these human iPSC-derived macrophages, the team then used CRISPR gene editing technology to systematically delete, or “knockout”, genes that may play a role in Chlamydia infection. Lead author Dr. Robert Hancock from UBC described the power of this approach:

about-bob-200x200

Robert Hancock

“We can knock out specific genes in stem cells and look at how the gene editing influences the resulting macrophages and their interaction with chlamydia. We’re effectively sieving through the genome to find key players and can now easily see genes that weren’t previously thought to be involved in fighting the infection.”

In fact, they found two genes that appear to play an important role in Chlamydia infection. When they knocked out either the IRF5 or IL-10RA gene, the macrophages were much more vulnerable to infection. The team is now eager to examine these two genes as possible targets for novel Chlamyia drug treatments. But as Dr. Gordon Dougan –the senior author from the Sanger Institute – explains, these studies could be far-reaching:

picture-gd1

Gordon Dougan

“This system can be extended to study other pathogens and advance our understanding of the interactions between human hosts and infections. We are starting to unravel the role our genetics play in battling infections, such as chlamydia, and these results could go towards designing more effective treatments in the future.”