How quitting smoking helps your lungs regenerate; a discovery could lead to new ways to repair damaged lungs; and encouraging news in a stroke recovery trial

Photo courtesy Lindsay Fox

Smoking is one of the leading causes of preventable death not just in the US, but worldwide. According to the US Centers for Disease Control and Prevention tobacco causes an estimated seven million deaths around the world, every single year. And for every person who dies, another 30 live with a serious smoking-related illness. Clearly quitting is a good idea. Now a new study adds even more incentive to do just that.

Scientists at the Welcome Trust Sanger Institute and University College London in the UK, found that quitting smoking did more than just stop further damage to the lungs. They found that cells in the lining of the lungs that were able to avoid being damaged, were able to regrow and repopulate the lung, helping repair damaged areas.

In an article in Science Daily Dr Peter Campbell, a joint senior author of the study, said: “People who have smoked heavily for 30, 40 or more years often say to me that it’s too late to stop smoking — the damage is already done. What is so exciting about our study is that it shows that it’s never too late to quit — some of the people in our study had smoked more than 15,000 packs of cigarettes over their life, but within a few years of quitting many of the cells lining their airways showed no evidence of damage from tobacco.”

The study is published in the journal Nature.

Researchers at UCLA have also made a discovery that could help people with lung disease.

They examined the lungs of people with cancer and compared them to the lungs of healthy people. They were able to identify a group of molecules, called the Wnt/beta-catenin signaling pathway, that appear to influence the activity of stem cells that are key to maintaining healthy lungs. Too much activity can tilt the balance away from healthy lungs to ones with mutations that are more prone to developing tumors.

In a news release Dr. Brigitte Gomperts, the lead author of the study, says although this work has only been done in mice so far it has tremendous potential: “We think this could help us develop a new therapy that promotes airway health. This could not only inform the treatment of lung cancer, but help prevent its progression in the first place.”

The study is published in the journal Cell Reports.

CIRM has funded some of Dr. Gomperts earlier work in this area.

And there’s encouraging news for people trying to recover from a stroke. Results from ReNeuron’s Phase 2 clinical trial show the therapy appears to help people who have experienced some level of disability following a stroke.

ReNeuron says its CTX therapy – made from neural stem cells – was given to 23 people who had moderate to severe disability resulting from an ischemic stroke. The patients were, on average, seven months post stroke.

In the study, published in the Journal of Neurology, Neurosurgery & Psychiatry, researchers used the Modified Rankin Scale (mRS), a measure of disability and dependence to assess the impact of the therapy. The biggest improvements were seen in a group of 14 patients who had limited movement of one arm.

  • 38.5% experienced at least a one-point improvement on mRS six months after being treated.
  • 50% experienced a one-point improvement 12 months after being treated.

If that doesn’t seem like a big improvement, then consider this. Moving from an mRS 3 to 2 means that a person with a stroke regains their ability to live independently.

The therapy is now being tested in a larger patient group in the PISCES III clinical trial.

Pregnant women’s stem cells could help battle brittle bone diseases like osteoporosis

pregnant

Sometimes I wonder how a scientist ever came up with an idea for a potential treatment. Case in point is a study in the journal Scientific Reports, where researchers use stem cells from the amniotic fluid of a pregnant woman to cure osteoporosis in mice! What researcher, seeing a pregnant woman, thought to her or himself “I wonder if…..”

Regardless of how they came up with the idea, we might be glad they did because this study showed that those stem cells could reduce the number of fractures in mice with brittle bone disease by 78 percent. And that’s raising hopes they might one day be able to do the same for people.

Researchers at University College London took mesenchymal stem cells (MSCs) that had been shed by babies into the amniotic fluid of their mother, and injected them into mice with brittle bone disease. Previous studies had suggested that MSCs, taken at such an early age, might be more potent than similar cells taken from adults. That certainly seems to have been the case here where the treated mice had far fewer fractures than untreated mice.

Pascale Guillot, the lead researcher of the study, told the Guardian newspaper:

“The stem cells we’ve used are excellent at protecting bones. The bones become much stronger and the way the bone is organised internally is of much higher quality.”

 

What was also interesting was not just what they did but how they did it. You might think that the injected stem cells helped reduce fractures by forming new bones. You might think that, but you’d be wrong. Instead, the stem cells seem to have worked by releasing growth factors that stimulated the mouse’s own bone cells to kick into a higher gear, and help build stronger bones.

In the study the researchers say using MSCs from amniotic fluid has a number of distinct advantages over using MSCs from adults:

  • They are easier to expand into large numbers needed for therapies
  • They don’t create tumors
  • The body’s immune system won’t attack them
  • They are smaller and so can move around with greater ease
  • They are easier to reprogram into different kinds of cells

Next Guillot and his team want to explore if this approach could be used to treat children and adults with brittle bone disease, and to help adults with osteoporosis, a problem that affects around 44 million people in the US.

 “The discovery could have a profound effect on the lives of patients who have fragile bones and could stop a large number of their painful fractures.”