We’ve got cash, here’s how you can get some

When the voters of California approved Proposition 14 last November (thanks folks) they gave us $5.5 billion to continue the work we started way back in 2014. It’s a great honor, and a great responsibility.

It’s also a great opportunity to look at what we do and how we do it and try to come up with even better ways of funding groundbreaking research and helping create a new generation of researchers.

In addition to improving on what we already do, Prop 14 introduced some new elements, some new goals for us to add to the mix, and we are in the process of fleshing out how we can best do that.

Because of all these changes we decided it would be a good idea to hold a “Town Hall” meeting and let everyone know what these changes are and how they may impact applications for funding.

The Town Hall, on Tuesday June 29, was a great success with almost 200 participants. But we know that not everyone who wanted to attend could, so here’s the video of the event, and below that are the questions that were posed by people during the meeting, and the answers to those questions.

Having seen the video we would be eternally grateful if you could respond to a short online survey, to help us get a better idea of your research and education needs and to be better able to serve you and identify potential areas of opportunity for CIRM. Here’s a link to that survey: https://www.surveymonkey.com/r/VQMYPDL

We know that there may be issues or questions that are not answered here, so feel free to send those to us at info@cirm.ca.gov and we will make sure you get an answer.

Are there any DISC funding opportunities specific to early-stage investigators?

DISC funding opportunities are open to all investigators.  There aren’t any that are specific to junior investigators.

Are DISC funding opportunities available for early-mid career researchers based out of USA such as Australia?

Sorry, you have to be in California for us to fund your work.

Does tumor immunology/ cancer immunotherapy fall within the scope of the CIRM discovery grants?

Yes, they do.  Here is a link to various CIRM DISC Awards that fall within the cancer category.  https://www.cirm.ca.gov/grants?disease_focus%5B%5D=1427&program_type%5B%5D=1230

Will Disc1 (Inception awards) and/or seed funding mechanisms become available again?

CIRM is anticipating launching a program to meet this need toward the end of this year.

For DISC award is possible to contact a grant advisor for advice before applying?

Please email discovery@cirm.ca.gov to discuss Discovery stage applications before applying

Is co-funding requirement a MUST for clinical trials?

Co-funding requirements vary.  Please refer to the following link for more information: https://www.cirm.ca.gov/sites/default/files/files/about_cirm/CLIN2_Mini_Brochure2.pdf

Hi, when will reviews for DISC 2: CIRM Quest – Discovery Stage Research Projects (deadline March 2021) be available? Thanks!

Review summaries for the March 2021 Discovery submitted applications will be available by mid-August, with final board funding decisions at the August 24th Application Review Subcommittee Meeting

Has CIRM project made it to Phase III or product launch with FDA approval? What is CIRM strategy for start-up biotech companies?

CIRM has funded several late-stage Phase III/potentially pivotal clinical trials. You can view them here: https://www.cirm.ca.gov/our-impact/funding-clinical-trials

CIRM funding supports non-profit academic grantees as well as companies of all sizes.

I am studying stem cells using mouse. Is my research eligible for the CIRM grants?

Yes it is.

Your programs more specifically into stem cell research would be willing to take patients that are not from California?

Yes, we have treated patients who are not in California. Some have come to California for treatment and others have been treated in other states in the US by companies that are based here in California.

Can you elaborate how the preview of the proposals works? Who reviews them and what are the criteria for full review?

The same GWG panel both previews and conducts the full review. The panel first looks through all the applications to identify what each reviewer believes represents the most likely to be impactful and meet the goals of the CIRM Discovery program. Those that are selected by any reviewer moves forward to the next full review step.

If you meet your milestones-How likely is it that a DISC recipient gets a TRAN award?

The milestones are geared toward preparation of the TRAN stage.  However, this is a different application and review that is not guaranteed to result in funding.

Regarding Manufacturing Public Private partnerships – What specific activities is CIRM thinking about enabling these partnerships? For example, are out of state for profit commercial entities able to conduct manufacturing at CA based manufacturing centers even though the clinical program may be primarily based out of CA? If so, what percent of the total program budget must be expended in CA? How will CIRM enable GMP manufacturing centers interact with commercial entities?

We are in the early stages of developing this concept with continued input from various stakeholders. The preliminary vision is to build a network of academic GMP manufacturing centers and industry partners to support the manufacturing needs of CIRM-funded projects in California.

We are in the process of widely distributing a summary of the manufacturing workshop. Here’s a link to it:

If a center is interested in being a sharing lab or competency hub with CIRM, how would they go about it?

CIRM will be soliciting applications for Shared Labs/Competency hubs in potential future RFAs. The survey asks several questions asking for feedback on these concepts so it would really help us if you could complete the survey.

Would preclinical development of stem cell secretome-derived protein therapies for rare neuromuscular diseases and ultimately, age-related muscle wasting be eligible for CIRM TRAN1 funding? The goal is to complete IND-enabling studies for a protein-based therapy that enhances tissue regeneration to treat a rare degenerative disease. the screening to identify the stem-cell secreted proteins to develop as therapeutics is done by in vitro screening with aged/diseased primary human progenitor cells to identify candidates that enhance their differentiation . In vivo the protein therapeutic signals to several cell types , including precursor cells to improve tissue homeostasis.

I would suggest reaching out to our Translation team to discuss the details as it will depend on several factors. You can email the team at translational@cirm.ca.gov

Here are the slides used in the presentations.

Hitting our Goals: Accelerating to the finish line

Way, way back in 2015 – seems like a lifetime ago doesn’t it – the team at CIRM sat down and planned out our Big 6 goals for the next five years. The end result was a Strategic Plan that was bold, ambitious and set us on course to do great things or kill ourselves trying. Well, looking back we can take some pride in saying we did a really fine job, hitting almost every goal and exceeding them in some cases. So, as we plan our next five-year Strategic Plan we thought it worthwhile to look back at where we started and what we achieved. Goal #6 was Accelerate.

Ever wonder how long it takes for a drug or therapy to go from basic research to approval by the US Food and Drug Administration (FDA)? Around 12 years on average is the answer. That’s a long time. And it can take even longer for stem cell therapies to go that same distance.

There are a lot of reasons why it takes so long (safety being a hugely important element) but when we were sitting down in 2015 to put together our Strategic Plan we wanted to find a way to speed up that process, to go faster, without in any way reducing the focus on safety.

So, we set a goal of reducing the time it takes from identifying a stem cell therapy candidate to getting an Investigational New Drug (IND) approval from the FDA, which means it can be tested in a clinical trial. At the time it was taking us around eight years, so we decided to go big and try to reduce that time in half, to four years.

Then the question was how were we going to do that? Well, before we set the goal we did a tour of the major biomedical research institutions in California – you know, University of California Los Angeles (UCLA) UC San Francisco, Stanford etc. – and asked the researchers what would help them most. Almost without exception said “a clearing house”, a way to pair early stage investigators with later stage partners who possess the appropriate expertise and interest to advance the project to the next stage of development, e.g., helping a successful basic science investigator find a qualified partner for the project’s translational research phase.

So we set out to do that. But we didn’t stop there. We also created what we called Clinical Advisory Panels or CAPs. These consisted of a CIRM Science Officer with expertise on a particular area of research, an expert on the kind of research being done, and a Patient Representative. The idea was that CAPs would help guide and advise the research team, helping them overcome specific obstacles and get ready for a clinical trial. The Patient Representative could help the researchers understand what the needs of the patient community was, so that a trial could take those into account and be more likely to succeed. For us it wasn’t enough just to fund promising research, we were determined to do all we could to support the team behind the project to advance their work.

How did we do. Pretty good I would have to say. For our Translational stage projects, the average amount of time it took for them to move to the CLIN1 stage, the last stage before a clinical trial, was 4.18 years. For our CLIN1 programs, 73 percent of those achieved their IND within 2 years, meaning they were then ready to actually start an FDA-sanctioned clinical trial.

Of course moving fast doesn’t guarantee that the therapy will ultimately prove effective. But for an agency whose mission is “to accelerate stem cell therapies to patients with unmet medical needs”, going slow is not an option.

Hitting our goals: Making good progress

Way, way back in 2015 – seems like a lifetime ago doesn’t it – the team at CIRM sat down and planned out our Big 6 goals for the next five years. The end result was a Strategic Plan that was bold, ambitious and set us on course to do great things or kill ourselves trying. Well, looking back we can take some pride in saying we did a really fine job, hitting almost every goal and exceeding them in some cases. So, as we plan our next five-year Strategic Plan we thought it worthwhile to look back at where we started and what we achieved. Goal #5 was Advance.

A dictionary definition of progression is “The act of moving forward or proceeding in a course.” That’s precisely what we set out to do when we set one of the goals in our 2015 Strategic Plan. We wanted to do all that we could to make sure the work we were funding could advance to the next stage. The goal we set was:

Advance: Increase projects advancing to the next stage of development by 50%.

The first question we faced was what did we mean by progression and how were we going to measure it? The answer basically boiled down to this: when a CIRM award completes one stage of research and gets CIRM funding to move on to the next stage or to develop a second generation of the same device or therapy.

In the pre-2016 days we’d had some success, on average getting around nine progression events every year. But if we were going to increase that by 50 percent we knew we had to step up our game and offer some incentives so that the team behind a successful project had a reason, other than just scientific curiosity, to try and move their research to the next level.

So, we created a series of linkages between the different stages of research, so the product of each successful investment was the prerequisite for the next stage of development for the research or technology.

We changed the way we funded projects, going from offering awards on an irregular basis to having them happen according to a pre-defined schedule with each program type offered multiple times a year. This meant potential applicants knew when the next opportunity to apply would come, enabling them to prepare and file at the time that was best for them and not just because we said so. We also timed these schedules so that programs could progress from one stage to the next without interruption.

But that’s not all. We recognized that some people may be great scientists at one level but didn’t have the experience or expertise to carry their project forward. So, we created both an Accelerating Center and Translating Center to help them do that. The Translating Center helped projects do the work necessary to get ready to apply to the US Food and Drug Administration (FDA) for permission to start a clinical trial. The Accelerating Center helped the team prepare that application for the trial and then plan how that trial would be carried out.

Creating these two centers had an additional benefit; it meant the work that did progress did so faster and was of a higher quality than it might otherwise have been.

Putting all those new building blocks in place meant a lot of work for the CIRM team, on top of their normal duties. But, as always, the team rose to the challenge. By the end of December 2020, a total of 74 projects had advanced or progressed to the next level, an increase of 100 percent on our pre-2016 days.

When we were laying out the goals we said that “The full implementation of these programs will create the chassis of a machine that provides a continuous, predictable, and timely pathway for the discovery and development of promising stem cell treatments.” Thanks to the voter approved Proposition 14 we now have the fund to help those treatments realize that promise.

Month of CIRM: Making sure stem cell therapies don’t get lost in Translation

All this month we are using our blog and social media to highlight a new chapter in CIRM’s life, thanks to the voters approving Proposition 14. We are looking back at what we have done since we were created in 2004, and also looking forward to the future. Today we feature a blog written by two of our fabulous Discovery and Translation team Science Officers, Dr. Kent Fitzgerald and Dr. Ross Okamura.

Dr. Ross Okamura

If you believe that you can know a person by their deeds, the partnership opportunities offered by CIRM illustrate what we, as an agency, believe is the most effective way to deliver on our mission statement, accelerating regenerative medicine treatments to patients with unmet medical needs.

Dr. Kent Fitzgerald

 In our past, we have offered awards covering basic biology projects which in turn provided the foundation to produce promising therapies  to ease human suffering.  But those are only the first steps in an elaborate process.

In order to bring these potential therapies to the clinic, selected drug candidates must next go through a set of activities designed to prepare them for review by the Food and Drug Administration (FDA). For cell therapies, the first formal review is often the Pre- Investigational New Drug Application Consultation or pre-IND.  This stage of drug development is commonly referred to as Translational, bridging the gap between our Discovery or early stage research and Clinical Trial programs.

One of our goals at CIRM is to prepare Translational projects we fund for that  pre-IND meeting with the FDA, to help them gather data that support the hope this approach will be both safe and effective in patients.  Holding this meeting with the FDA is the first step in the often lengthy process of conducting FDA regulated clinical trials and hopefully bringing an approved therapy to patients.

What type of work is required for a promising candidate to move from the Discovery stage into FDA regulated development?  To address the needs of Translational science, CIRM offers the Translational Research Project funding opportunity.  Activities that CIRM supports at the Translational stage include:

  • Process Development to allow manufacturing of the candidate therapy under Good Manufacturing Practices (GMP). This is to show that they can manufacture  at a large enough scale to treat patients.
  • Assay development and qualification of measurements to determine whether the drug is being manufactured safely while retaining its curative properties.
  • Studies to determine the optimal dose and the best way to deliver that dose.
  • Pilot safety studies looking how the patient might respond after treatment with the drug.
  • The development of a clinical plan indicating under what rules and conditions the drug might be prescribed to a patient. 

These, and other activities supported under our Translational funding program, all help to inform the FDA when they consider what pivotal studies they will require prior to approving an Investigational New Drug (IND) application, the next step in the regulatory approval process.

Since CIRM first offered programs specifically aimed at addressing the Translational stage of therapeutic candidates we have made 41 awards totaling approximately $150 million in funding.  To date, 13 have successfully completed and achieved their program goals, while 19 others are still actively working towards meeting their objective.  Additionally, three (treating Spina Bifida, Osteonecrosis, and Sickle Cell Disease) of the 13 programs have gone on to receive further CIRM support through our Clinical Stage programs.

During our time administering these awards, CIRM has actively partnered with our grantees to navigate what is required to bring a therapy from the bench to the bedside.  CIRM operationalizes this by setting milestones that provide clear definitions of success, specific goals the researchers have to meet to advance the project and also by providing resources for a dedicated project manager to help ensure the project can keep the big picture in mind while executing on their scientific progress. 

Throughout all this we partner with the researchers to support them in every possible way. For example, CIRM provides the project teams with Translational Advisory Panels (TAPs, modeled after the CIRM’s Clinical Advisory Panels) which bring in outside subject matter experts as well as patient advocates to help provide additional scientific, regulatory and clinical expertise to guide the development of the program at no additional cost to the grantees.  One of the enduring benefits that we hope to provide to researchers and organizations is a practical mastery of translational drug development so that they may continue to advance new and exciting therapies to all patients.

Through CIRM’s strong and continued support of this difficult stage of development, CIRM has developed an internal practical expertise in advancing projects through Translation.  We employ our experience to guide our awardees so they can avoid common pitfalls in the development of cell and gene therapies. The end goal is simple, helping to accelerate their path to the clinic and fulfilling the mission of CIRM that has been twice given to us by the voters of California, bringing treatments to patients suffering from unmet medical needs.

Much to be Thankful for

It’s traditional this time of year to send messages of gratitude to friends and family and colleagues. And we certainly have much to be thankful for.

Thanks to the voters of California, who passed Proposition 14, we have a bright, and busy, future. We have $5.5 billion to continue our mission of accelerating stem cell treatments to patients with unmet medical needs.

That means the pipeline of promising projects that we have supported from an early stage can now apply to us to help take that work out of the lab and into people.

It means research areas, particularly early-stage work, where we had to reduce our funding as we ran out of money can now look forward to increased support.

It means we can do more to bring this research, and it’s potential benefits, to communities that in the past were overlooked.

We have so many people to thank for all this. The scientists who do the work and championed our cause at the ballot box. The voters of California who once again showed their support for and faith in science. And the patients and patient advocates, the reason we were created and the reason we come to work every day.

As Dr. Maria Millan, our President & CEO, said in a letter to our team; “We are continually faced by great opportunities brilliantly disguised as insoluble problems.”  Here’s to the opportunities made possible by CIRM and for its continuation made possible by Prop 14!”

And none of this would be possible without the support of all of you. And for that we are truly Thankful.

From everyone at CIRM, we wish you a happy, peaceful and safe Thanksgiving.

Building a progressive pipeline

Dr. Kelly Shepard

By Dr. Kelly Shepard

One of our favorite things to do at CIRM is deliver exciting news about CIRM projects. This usually entails discussion of recent discoveries that made headlines, or announcing the launch of a new CIRM-funded clinical trial …. tangible signs of progress towards addressing unmet medical needs through advances in stem technology.

But there are equally exciting signs of progress that are not always so obvious to the untrained eye-  those that we are privileged to witness behind the scenes at CIRM. These efforts don’t always lead to a splashy news article or even to a scientific publication, but they nonetheless drive the evolution of new ideas and can help steer the field away from futile lines of investigation. Dozens of such projects are navigating uncharted waters by filling knowledge gaps, breaking down technical barriers, and working closely with regulatory agencies to define novel and safe paths to the clinic.

These efforts can remain “hidden” because they are in the intermediate stages of the long, arduous and expensive journey from “bench to beside”.  For the pioneering projects that CIRM funds, this journey is unique and untrod, and can be fraught with false starts. But CIRM has developed tools to track the momentum of these programs and provide continuous support for those with the most promise. In so doing, we have watched projects evolve as they wend their way to the clinic. We wanted to share a few examples of how we do this with our readers, but first… a little background for our friends who are unfamiliar with the nuts and bolts of inventing new medicines.

A common metaphor for bringing scientific discoveries to market is a pipeline, which begins in a laboratory where a discovery occurs, and ends with government approval to commercialize a new medicine, after it is proven to be safe and effective. In between discovery and approval is a stage called “Translation”, where investigators develop ways to transition their “research level” processes to “clinically compatible” ones, which only utilize substances that are of certified quality for human use. 

Investigators must also work out novel ways to manufacture the product at larger scale and transition the methods used for testing in animal models to those that can be implemented in human subjects.

A key milestone in Translation is the “preIND” (pre Investigational New Drug (IND) meeting, where an investigator presents data and plans to the US Food and Drug Administration (FDA) for feedback before next stage of development begins, the pivotal testing needed to show it is both safe and effective.

These “IND enabling studies” are rigorous but necessary to support an application for an IND and the initiation of clinical trials, beginning with phase 1 to assess safety in a small number of individuals, and phase 2, where an expanded group is evaluated to see if the therapy has any benefits for the patient. Phase 3 trials are studies of very large numbers of individuals to gain definitive evidence of safety and therapeutic effect, generally the last step before applying to the FDA for market approval. An image of the pipeline and the stages described are provided in our diagram below.

The pipeline can be notoriously long and tricky, with plenty of twists, turns, and unexpected obstacles along the way. Many more projects enter than emerge from this gauntlet, but as we see from these examples of ‘works in progress”, there is a lot of momentum building.

Caption for Graphic: This graphic shows the number of CIRM-funded projects and the stages they have progressed through multiple rounds of CIRM funding. For example, the topmost arrow shows that are about 19 projects at the translational stage of the pipeline that received earlier support through one of CIRM’s Discovery stage programs. Many of these efforts came out of our pre-2016 funding initiatives such as Early Translation, Basic Biology and New Faculty Awards. In another example, you can see that about 15 awards that were first funded by CIRM at the IND enabling stage have since progressed into a phase 1 or phase 2 clinical trials. While most of these efforts also originated in some of CIRM’s pre-2016 initiatives such as the Disease Team Awards, others have already progressed from CIRM’s newer programs that were launched as part of the “2.0” overhaul in 2016 (CLIN1).

The number of CIRM projects that have evolved and made their way down the pipeline with CIRM support is impressive, but it is clearly an under-representation, as there are other projects that have progressed outside of CIRM’s purview, which can make things trickier to verify.

We also track projects that have spun off or been licensed to commercial organizations, another very exciting form of “progression”. Perhaps those will contribute to another blog for another day! In the meantime, here are a just a few examples of some of the progressors that are depicted on the graphic.

Project: stem cell therapy to enhance bone healing in the elderly

– Currently funded stage: IND enabling development, CLIN1-11256 (Dr. Zhu, Ankasa Regenerative Therapeutics)

– Preceded by preIND-enabling studies, TRAN1-09270 (Dr. Zhu, Ankasa Regenerative Therapeutics)

– Preceded by discovery stage research grant TR1-01249 (Dr. Longaker and Dr. Helm, Stanford)

Project: embryonic stem cell derived neural cell therapy for Huntington Disease

– Currently funded stage: IND enabling development, CLIN1-10953 (Dr. Thompson, UC Irvine)

– Preceded by preIND-enabling studies, PC1-08117 (Dr. Thompson, UC Irvine)

– Preceded by discovery stage research grant (TR2-01841) (Dr. Thompson, UC Irvine)

Project: gene-modified hematopoietic stem cells for Artemis Deficient severe combined immunodeficiency (SCID)

– Currently funded stage: Phase 1 clinical trial CLIN2-10830 (Dr. Cowan, UC San Francisco)

– Preceded by IND enabling development, CLIN1-08363 (Dr. Puck, UC San Francisco)

– Preceded by discovery stage research grant, TR3-05535  (Dr. Cowan, UC San Francisco)

Project: retinal progenitor cell therapy for retinitis pigmentosa

– Currently funded stage: Phase 2 and 2b clinical trials, CLIN2-11472, CLIN2-09698 (Dr. Klassen, JCyte, Inc.)

– Preceded by IND enabling development, DR2A-05739 (Dr. Klassen, UC Irvine)

– Preceded by discovery stage research grant, TR2-01794 (Dr. Klassen, UC Irvine)

From bench to bedside – CIRM plays a vital role in accelerating science

Dr. Maria T. Millan, President & CEO of CIRM

The field of stem cell research and regenerative medicine has exploded in the last few years with new approaches to treat a wide array of diseases. Although these therapies are quite promising, they face many challenges in trying to bring them from the laboratory and into patients. But why is this? What can we do to ensure that these approaches are able to cross the finish line?

A new article published in Cell Stem Cell titled Translating Science into the Clinic: The Role of Funding Agencies takes a deeper dive into these questions and how agencies like CIRM play an active role in helping advance the science. The article was written by Dr. Maria T. Millan, President & CEO of CIRM, and Dr. Gil Sambrano, Vice President of Portfolio Development and Review at CIRM.

Although funding plays an essential role in accelerating science, it is not by itself sufficient. The article describes how CIRM has established internal processes and procedures that aim to help accelerate projects in the race to the finish line. We are going to highlight a few of these in this post, but you can read about them in full by clicking on the article link here.

One example of accelerating the most promising projects was making sure that they make important steps along the way. For potential translational awards, which “translate” basic research into clinical trials, this means having existing data to support a therapeutic approach. For pre-clinical and clinical awards, it means meeting with the Food and Drug Administration (FDA) and having an active investigational new drug (IND) approved or pre-IND, important steps that need to be taken before these treatments can be tested in humans. Both of these measures are meant to ensure that the award is successful and progress quickly.

Another important example is not just giving these projects the funding in its entirety upfront, rather, tying it to milestones that guide a project to successful completion. Through this process, projects funded by CIRM become focused on achieving clear measurable objectives, and activities that detract from those goals are not supported.

Aside from requirements and milestones tied to funding, there are other ways that CIRM helps bolster its projects.

One of these is an outreach project CIRM has implemented that identifies investigators and projects with the potential to enhance already existing projects. This increases the number of people applying to CIRM projects as well as the quality of the applications.

Another example is CIRM’s Industry Alliance Program, which facilitates partnerships between promising CIRM-funded projects and companies capable of bringing an approved therapy to market. The ultimate goal is to have therapies become available to patients, which is generally made possible through commercialization of a therapeutic product by a pharmaceutical or biotechnology company.

CIRM has also established advisory panels for its clinical and translational projects, referred to as CAPs and TAPs. They are composed of external scientific advisors with expertise that complements the project team, patient advocate advisors, and CIRM Science Officers. The advisory panel provides guidance and brings together all available resources to maximize the likelihood of achieving the project objective on an accelerated timeline.

Lastly, and most importantly, CIRM has included patient advocates and patient voices in the process to help keep the focus on patient needs. In order to accelerate therapies to the clinic, funders and scientists need input on what ultimately matters to patients. Investing effort and money on potential therapies that will have little value to patients is a delay on work that really matters. Even if there is not a cure for some of these diseases, making a significant improvement in quality of life could make a big difference to patients. There is no substitute to hearing directly from patients to understand their needs and to assess the balance of risk versus benefit. As much as science drives the process of bringing these therapies to light, patients ultimately determine its relevance.

CIRM Board Awards $15.8 Million to Four Translational Research Projects

Last week, the CIRM Board approved $32.92 million in awards directed towards four new clinical trials in vision related diseases and Parkinson’s Disease.

In addition to these awards, the Board also approved investing $15.80 million in four awards in the Translational Research program. The goal of this program is to help promising projects complete the testing needed to begin talking to the US Food and Drug Administration (FDA) about holding a clinical trial.

Before we go into more specific details of each one of these awards, here is a table summarizing these four new projects:

ApplicationTitleInstitutionAward Amount
TRAN1 11536Ex Vivo Gene Editing of Human Hematopoietic Stem Cells for the Treatment of X-Linked Hyper IgM Syndrome  UCLA $4,896,628
TRAN1 11555BCMA/CS1 Bispecific CAR-T Cell Therapy to Prevent Antigen Escape in Multiple Myeloma  UCLA $3,176,805
TRAN1 11544 Neural Stem cell-mediated oncolytic immunotherapy for ovarian cancer  City of Hope $2,873,262
TRAN1 11611Development of a human stem cell-derived inhibitory neuron therapeutic for the treatment of chronic focal epilepsyNeurona Therapeutics$4,848,750
Dr. Caroline Kuo, UCLA

$4.89 million was awarded to Dr. Caroline Kuo at UCLA to pursue a gene therapy approach for X-Linked Hyper IgM Syndrome (X-HIM).

X-HIM is a hereditary immune disorder observed predominantly in males in which there are abnormal levels of different types of antibodies in the body.  Antibodies are also known as Immunoglobulin (Ig) and they combat infections by attaching to germs and other foreign substances, marking them for destruction.  In infants with X-HIM, there are normal or high levels of antibody IgM but low levels of antibodies IgG, IgA, and IgE.  The low level of these antibodies make it difficult to fight off infection, resulting in frequent pneumonia, sinus infections, ear infections, and parasitic infections.  Additionally, these infants have an increased risk of cancerous growths. 

The gene therapy approach Dr. Kuo is continuing to develop involves using CRISPR/Cas9 technology to modify human blood stem cells with a functional version of the gene necessary for normal levels of antibody production.  The ultimate goal would be to take a patient’s own blood stem cells, modify them with the corrected gene, and reintroduce them back into the patient.

CIRM has previously funded Dr. Kuo’s earlier work related to developing this gene therapy approach for XHIM.

Dr. Yvonne Chen, UCLA

$3.17 million was awarded to Dr. Yvonne Chen at UCLA to develop a CAR-T cell therapy for multiple myeloma (MM).

MM is a type of blood cancer that forms in the plasma cell, a type of white blood cell that is found in the bone marrow.  An estimated 32,110 people in the United States will be diagnosed with MM in 2019 alone.  Several treatment options are available to patients with MM, but there is no curative therapy.

The therapy that Dr. Chen is developing will consist of a genetically-modified version of the patient’s own T cells, which are an immune system cell that can destroy foreign or abnormal cells.  The T cells will be modified with a protein called a chimeric antigen receptor (CAR) that will recognize BCMA and CS1, two different markers found on the surface of MM cells.  These modified T cells (CAR-T cells) are then infused into the patient, where they are expected to detect and destroy BCMA and CS1 expressing MM cells.

Dr. Chen is using CAR-T cells that can detect two different markers in a separate clinical trial that you can read about in a previous blog post.

Dr. Karen Aboody, City of Hope

$2.87 million was awarded to Dr. Karen Aboody at City of Hope to develop an immunotherapy delivered via neural stem cells (NSCs) for treatment of ovarian cancer.

Ovarian cancer affects approximately 22,000 women per year in the United States alone.  Most ovarian cancer patients eventually develop resistance to chemotherapy, leading to cancer progression and death, highlighting the need for treatment of recurring ovarian cancer.

The therapy that Dr. Aboody is developing will use an established line of NSCs to deliver a virus that specifically targets these tumor cells.  Once the virus has entered the tumor cell, it will continuously replicate until the cell is destroyed.  The additional copies of the virus will then go on to target neighboring tumor cells.  This process could potentially stimulate the body’s own immune response to fight off the cancer cells as well.

Dr. Cory Nicholas, Neurona Therapeutics

$4.85 million was awarded to Dr. Cory Nicholas at Neurona Therapeutics to develop a treatment for epilepsy.

Epilepsy affects more than 3 million people in the United States with about 150,000 newly diagnosed cases in the US every year. It results in persistent, difficult to manage, or uncontrollable seizures that can be disabling and significantly impair quality of life. Unfortunately, anti-epileptic drugs fail to manage the disease in a large portion of people with epilepsy. Approximately one-third of epilepsy patients are considered to be drug-resistant, meaning that they do not adequately respond to at least two anti-epileptic drugs.

The therapy that Dr. Nicholas is developing will derive interneurons from human embryonic stem cells (hESCs). These newly derived interneurons would then be delivered to the brain via injection whereby the new cells are able to help regulate aberrant brain activity and potentially eliminate or significantly reduce the occurrence of seizures.

CIRM has previously funded the early stage development of this approach via a comprehensive grant and discovery grant.

Breaking bad news to stem cell researchers

It’s never easy to tell someone that they are too late, that they missed the deadline. It’s particularly hard when you know that the person you are telling that to has spent years working on a project and now needs money to take it to the next level. But in science, as in life, it’s always better to tell people what they need to know rather than what they would like to hear.

And so, we have posted a notice on our website for researchers thinking about applying for funding that, except in a very few cases, they are too late, that there is no money available for new projects, whether it’s Discovery, Translational or Clinical.

Here’s that notice:

CIRM anticipates that the budget allocation of funds for new awards under the CIRM clinical program (CLIN1, CLIN2 and CLIN3) may be depleted within the next two to three months. CIRM will accept applications for the monthly deadline on June 28, 2019 but will suspend application submissions after that date until further notice. All applicants should note that the review of submitted applications may be halted at any point in the process if funds are depleted prior to completion of the 3-month review cycle. CIRM will notify applicants of such an occurrence. Therefore, submission and acceptance of an application to CIRM does not guarantee the availability of funds or completion of a review cycle.

The submission of applications for the CIRM/NHLBI Cure Sickle Cell Initiative (CLIN1 SCD, CLIN2 SCD) are unaffected and application submissions for this program will remain open.

We do, of course, have enough money set aside to continue funding all the projects our Board has already approved, but we don’t have money for new projects (except for some sickle cell disease projects).

In truth our funding has lasted a lot longer than anyone anticipated. When Proposition 71 was approved the plan was to give CIRM $300 million a year for ten years. That was back in 2004. So what happened?

Well, in the early years stem cell science was still very much in its infancy with most of the work being done at a basic or Discovery level. Those typically don’t require very large sums so we were able to fund many projects without hitting our $300m target. As the field progressed, however, more and more projects were at the clinical trial stage and those need multiple millions of dollars to be completed. So, the money went out faster.

To date we have funded 55 clinical trials and our early support has helped more than a dozen other projects get into clinical trials. This includes everything from cancer and stroke, to vision loss and diabetes. It’s a good start, but we feel there is so much more to do.

Followers of news about CIRM know there is talk about a possible ballot initiative next year that would provide another $5.5 billion in funding for us to help complete the mission we have started.

Over the years we have built a pipeline of promising projects and without continued support many of those projects face a difficult future. Funding at the federal level is under threat and without CIRM there will be a limited number of funding alternatives for them to turn to.

Telling researchers we don’t have any money to support their work is hard. Telling patients we don’t have any money to support work that could lead to new treatments for them, that’s hardest of all.

Budgeting for the future of the stem cell agency

ICOC_DEC17-24

The CIRM Board discusses the future of the Stem Cell Agency

Budgets are very rarely exciting things; but they are important. For example, it’s useful for a family to know when they go shopping exactly how much money they have so they know how much they can afford to spend. Stem cell agencies face the same constraints; you can’t spend more than you have. Last week the CIRM Board looked at what we have in the bank, and set us on a course to be able to do as many of the things we want to, with the money we have left.

First some context. Last year CIRM spent a shade over $306 million on a wide range of research from Discovery, the earliest stage, through Translational and into Clinical trials. We estimate that is going to leave us with approximately $335 million to spend in the coming years.

A couple of years ago our Board approved a 5 year Strategic Plan that laid out some pretty ambitious goals for us to achieve – such as funding 50 new clinical trials. At the time, that many clinical trials definitely felt like a stretch and we questioned if it would be possible. We’re proving that it is. In just two years we have funded 26 new clinical trials, so we are halfway to our goal, which is terrific. But it also means we are in danger of using up all our money faster than anticipated, and not having the time to meet all our goals.

Doing the math

So, for the last couple of months our Leadership Team has been crunching the numbers and looking for ways to use the money in the most effective and efficient way. Last week they presented their plan to the Board.

It boiled down to a few options.

  • Keep funding at the current rate and run out of money by 2019
  • Limit funding just to clinical trials, which would mean we could hit our 50 clinical trial goal by 2020 but would not have enough to fund Discovery and Translational level research
  • Place caps on how much we fund each clinical trial, enabling us to fund more clinical trials while having enough left over for Discovery and Translational awards

The Board went for the third option for some good reasons. The plan is consistent with the goals laid out in our Strategic Plan and it supports Discovery and Translational research, which are important elements in our drive to develop new therapies for patients.

Finding the right size cap

Here’s a look at the size of the caps on clinical trial funding. You’ll see that in the case of late stage pre-clinical work and Phase 1 clinical trials, the caps are still larger than the average amount we funded those stages last year. For Phase 2 the cap is almost the same as the average. For Phase 3 the cap is half the amount from last year, but we think at this stage Phase 3 trials should be better able to attract funding from other sources, such as industry or private investors.

cap awards

Another important reason why the Board chose option three – and here you’ll have to forgive me for being rather selfish – is that it means the Administration Budget (which pays the salaries of the CIRM team, including yours truly) will be enough to cover the cost of running this research plan until 2020.

The bottom line is that for 2018 we’ll be able to spend $130 million on clinical stage research, $30 million for Translational stage, and $10 million for Discovery. The impact the new funding caps will have on clinical stage projects is likely to be small (you can see the whole presentation and details of our plan here) but the freedom it gives us to support the broad range of our work is huge.

And here is where to go if you are interested in seeing the different funding opportunities at CIRM.