In the end, all living things—even the cells in our bodies—must die. But what if we could delay the inevitable, even just for a bit? What new scientific advances could come as a result?
In research published this week in the FASEB Journal, scientists at the Stanford University School of Medicine have devised a new method that gives aging DNA a molecular facelift.
The procedure, developed by Stanford Stem Cell Scientist Helen Blau and her team at the Baxter Laboratory for Stem Cell Biology, physically lengthens the telomeres—the caps on the ends of chromosomes that protect the cell from the effects of aging.
When born, all cells contain chromosomes capped with telomeres. But during each round of cell division, those telomeres shrink. Eventually, the telomeres shorten to such an extent that the chromosomes can no longer replicate at the rate they once could. For the cell, this is the beginning of the end.
The link between telomeres and cellular aging has been an intense focus in recent years, including the subject of the 2009 Nobel Prize in Physiology or Medicine. Extending the lifespan of cells by preventing—or reversing— the shortening of telomeres can not only boost cell division during laboratory studies, but can also lead to new therapeutic strategies to treat age-related diseases.
“Now we have found a way to lengthen human telomeres… turning back the internal clock in these cells by the equivalent of many years of human life,” explained Blau in a press release. “This greatly increases the number of cells available for studies such as drug testing or disease modeling.”
The method Blau and her team describe involves the use of a modified bit of RNA that boosts the production of the protein telomerase. Telomerase is normally present in high levels in stem cells, but drops off once the cells mature. Blau’s modified RNA gives the aging cells a shot of telomerase, after which they begin behaving like cells half their age. But only for about 48 hours, after which they begin to degrade again.
The temporary nature of this change, say the researchers, offers significant advantages. On the biological level, it means that the treated cells won’t begin dividing out of control indefinitely, minimizing the risk of tumor formation. The study’s first author John Ramunas offers up some additional pluses to their method:
“Existing methods of extending telomeres act slowly, whereas our method acts over just a few days to reverse telomere shortening that occurs over more than a decade of normal aging. This suggests that a treatment using our method could be brief and infrequent.”
Indeed, the genetic disease Duchenne muscular dystrophy is in part characterized by abnormally short telomeres. Blau reasons that their discovery could lead to better treatments for this disease. Their immediate future steps involve testing their method in a variety of cell types. Said Blau:
“We’re working to understand more about the differences among cell types, and how we can overcome those differences to allow this approach to be more universally successful.”
Hear more about stem cells and muscular dystrophy in our recent Spotlight on Disease featuring Helen Blau: