From Stem Cells to Cures with Shinya Yamanaka and Google Ventures

How do you go from basic stem cell research to cures for patients? We ask this question everyday at CIRM, and we’re not alone in our tireless pursuit to find answers to this challenging question.

In fact, two leaders on different sides of the stem cell arena – research and investment – came together last week at the Gladstone Institutes’ Fall Symposium to discuss how stem cell research can be translated into effective cures.

Nobel prize winner, Dr. Shinya Yamanaka, and Google Ventures partner and Stanford PhD, Dr. Blake Byers, shared their thoughts on where stem cell research is now and the future of stem cell therapy for treating and curing disease.

iPS Cells and the Stem Cell Revolution

Gladstone President, Sandy Williams

Gladstone President, Sandy Williams

President of the Gladstone Institutes, Dr. Sandy Williams, laid the groundwork for the symposium by outlining ways that stem cell research, especially Dr. Yamanaka’s discovery of cellular reprogramming and induced pluripotent stem (iPS) cells, will lead to cures.

“Cellular reprogramming has really launched the stem cell revolution. There are three pathways that stem cell biology or cellular reprogramming can be turned into new medicines. Cellular transplantation, reprogramming cells inside the body, and cellular models of human disease created by cellular reprogramming are all different routes to cures.”

He followed with the point that the success of the stem cell revolution cannot rest solely on the shoulders of scientists and clinicians. He said, “the best science will never be a cure unless it passes into the commercial arena. It has to pass through venture investors, biotechnology companies, and pharmaceutical companies, device companies for scientific advances to help human beings.”

Yamanaka on iPS Cell Applications

Dr. Shinya Yamanaka

Dr. Shinya Yamanaka

Yamanaka covered the research side of the discussion and shared a heartwarming story about his father inspiring him to pursue medicine before delving into the applications of his Nobel prize winning technology.

After becoming a doctor, Yamanaka continued his training as a scientist, but not without significant hurdles to overcome before his career-defining success.

I had a clear vision, I wanted to help patients by doing medical research. But of course, it’s easy to say, but very difficult to achieve. I spent many hours, many days, and many years in laboratories without significant success. 20 years later however, I became extremely lucky to have a wonderful group of people. And that group developed a new technology. Our group was able to find a way to make a new type of stem cell, which we designated iPS cells.

He then discussed the power of iPS cell technology and how scientists can turn patient iPS cells into almost any cell type in the body. He also emphasized two major medical applications of iPS cells that will lead to cures.

iPS cells are very powerful. We can use these cells for two major medical applications. We can transplant healthy brain cells [derived from iPS cells] back into the patients brains to obtain functional recovery. This approach is known as regenerative medicine or cell therapy. We’ve been trying to apply this approach of cell therapy to many diseases and injuries, for example, eye diseases such as macular degeneration, brain diseases such as PD, and also spinal cord injury, heart failure, liver failure, and diabetes. Also we’ve been trying to make immune cells, or lymphocytes, that attack cancer cells from iPS cells as a new form of cancer therapy. This is the first medical application of iPS cells. Another yet equally important application of iPS cells is in drug discovery. Instead of transplanting back into patients, we can use iPS cells and brain cells or heart cells derived from iPS cells in laboratories at the universities, Gladstone Institutes, or pharmaceutical companies to make disease models to perform drug screening.

Yamanaka ended his speech with his big picture goal. “We really want to bring iPS cells to patients, and we really want to help patients by using iPS cells. Of course we still have a long long way to go, and we need to overcome many problems.”

Byers on Facing Stem Cell Hurdles Because It’s Worth it

On the investment and capital side, Blake Byers from Google Ventures discussed why stem cell research should be pursued even though the obstacles in our path to cures can be daunting.

Blake Byers, Google Ventures

Blake Byers, Google Ventures

While Byers has been on the “evil capitalist side of the world” for the past five years, he has been “taking soul supplements by continuing to do research at Stanford University.” His most recent scientific publication was published in July on generating dopaminergic neurons from human iPS cells and transplanting them into rats with Parkinson’s disease. Using a cutting-edge technology called optogenetics, Byers was able to manipulate the activity of these transplanted neurons in the rat brain using light and fiber optic cables. He said this experience was his “first foray into the power that stem cells have in a therapeutic capacity.”

He then explained why iPS cells show more promise as cures than other therapeutic avenues.

So why work with these stem cells if they are so much harder to work with than just a small molecule or some chemical that we bake up in the laboratory? The reason is because cells have something that none of these other molecules do. Cells have logic embedded into them. They have the ability to respond to their environment, integrate that response, and come up with their own intervention on our behalf. [With cells] we can start to think about things that biology doesn’t even do yet. So not only can we cure diseases as they arise, but we can start thinking about prevention of disease before it arises.

Byers then gave an example of how stem cells will benefit cancer therapy.

On the cancer side, we can take cells out of the body and train them to look for cancer, and then put them back in. They then go and hunt for those cancer cells and eradicate them. This work is being done by many labs. There’s a number of companies working on this strategy that are public companies that are valued in the billions, which gets capitalists like me very excited. And it’s just the beginning of a new field on the cancer side.

(For an example of this, see our just-approved clinical trail for glioblastoma)

Finally, Byers admitted that the stem cell field itself is far from putting stem cells and their derivatives into humans routinely, and that “there’s going to be lots of stuff that’s going to be difficult about this process. It’s going to be hard, but it will be worth it. So that means we should try to do this, and that’s the exact reason we are excited to be working in this field and very actively looking at companies in this general field of stem cells attempting to cure diseases.”

From Stem Cells to Cures

After listening to both Yamanaka and Byers, it was clear that both had the same view of the stem cell field. They both believe that we are at a turning point in stem cell research and that our efforts both at the bench and on the commercial side need to remain stalwart in their efforts to push stem cell research forward so we can develop safe and effective therapies for patients.

Blake Byers, Shinya Yamanaka, and Sandy Williams take questions from the audience.

Blake Byers, Shinya Yamanaka, and Sandy Williams take questions from the audience.

One comment from the audience that stood out was that the the main limitation to the success of stem cell research seems to be a reduction in funding at the very time we need to increase funding.

In response, Byers agreed and suggested that to fix the funding issue, there needs to be an objective function in stem cell research. He suggested that the field needs to “measure the output we are having and what the impact of it is.” He said what is currently lacking is an ability to “measure of that return on investment for society”.

Yamanaka followed up by addressing the issue of costs for cures. “The cost of new cures and medicines is extremely challenging but important. We now have many new medicines, but they are too expensive. How to lower those costs, [is a question] we seriously need to consider”.

 

The Ogawa-Yamanaka Prize Crowns Its First Stem Cell Champion

A world of dark

Imagine if you woke up one day and couldn’t see. Your life would change drastically, and you would have to painfully relearn how to function in a world that heavily relies on sight.

A retina of a patient with macular degeneration. (Photo credit: Paul Parker/SPL)

A retina of a patient with macular degeneration. (Photo credit: Paul Parker/SPL)

While most people don’t lose their sight overnight, many suffer from visual impairments that slowly happen over time. Glaucoma, cataracts, and macular degeneration are examples of debilitating eye diseases that eventually lead to blindness.

With almost 300 million people world wide with some form of visual impairment, there’s urgency in the scientific community to develop safe therapies for clinical applications. One of the most promising strategies is using human induced pluripotent stem (iPS) cells derived from patients to generate cell types suitable for transplantation into the human eye.

However, this task is more easily said than done. Safety, regulatory, and economical concerns make the process of translating iPS cell therapies from the bench into the clinic an enormous challenge worthy only of a true scientific champion.

A world of light

Dr. Masayo Takahashi

Dr. Masayo Takahashi

Meet Dr. Masayo Takahashi. She is a faculty member at the RIKEN Centre for Developmental Biology, a prominent female scientist in Japan, and a bona fide stem cell champion. Her mission is to cure diseases of blindness using iPS cell technology.

Since the Nobel Prize-winning discovery of iPS cells by Dr. Shinya Yamanaka eight years ago, Dr. Takahashi has made fast work using this technology to generate specific cells from human iPS cells that can be transplanted into patients to treat an eye disease called macular degeneration. This disease results in the degeneration of the retina, an area in the back of the eye that receives light and translates the information to your brain to produce sight.

Dr. Takahashi generates cells called retinal pigment epithelial (RPE) cells from human iPS cells that can replace lost or dying retinal cells when transplanted into patients with macular degeneration. What makes this therapy so exciting is that Dr. Takahashi’s iPS-derived RPE cells appear to be relatively safe and don’t cause an immune system reaction or cause tumors when transplanted into humans.

Because of the safety of her technology, and the unfulfilled needs of millions of patients with eye diseases, Dr. Takahashi made it her goal to take iPS cells into humans within five years of Dr. Yamanaka’s discovery.

Ogawa-Yamanaka Stem Cell Prize

It’s no surprise that Dr. Takahashi succeeded in her ambitious goal. Her cutting edge work has led to the first clinical trial using iPS cells in humans, specifically treating patients with macular degeneration. In September 2014, the first patient, a 70-year-old Japanese woman, received a transplant of her own iPS-derived RPE cells and no complications were reported.

Currently, the trial is on hold “as part of a safety validation step and in consideration of anticipated regulatory changes to iPS cell research in Japan” according to a Gladstone Institute news release. Nevertheless, this first iPS cell trial in humans has overcome significant regulatory hurdles, has set an important precedent for establishing the safety of stem cell therapies, and has given scientists hope that iPS cell therapies can become a reality.

Dr. Deepak Srivastava presents Dr. Takahashi with the Ogawa-Yamanaka Prize.

Dr. Deepak Srivastava presents Dr. Takahashi with the Ogawa-Yamanaka Prize.

For her accomplishments, Dr. Takahashi was recently awarded the first ever Ogawa-Yamanaka Stem Cell Prize and honored at a special event held at the Gladstone Institutes in San Francisco yesterday. This prize was established by a generous gift from Mr. Hiro Ogawa in collaboration with Dr. Shinya Yamanaka and Dr. Deepak Srivastava at the Gladstone Institutes. The award recognizes scientists who conduct translational iPS cell research that will eventually be applied to patients in the clinic.

In an interview with CIRM, Dr. Deepak Srivastava, the Director of the Gladstone Institute of Cardiovascular Disease and the Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, described the prestigious prize and the ceremony held at the Gladstone to honor Dr. Takahashi:

Dr. Deepak Srivastava

The Ogawa-Yamanaka prize prize is meant to incentivize and honor those whose work is advancing the translational use of stem cells for regenerative medicine. Dr. Masayo Takahashi is a pioneer in pushing the technology of iPS cell-derived cell types and actually introducing them into people. She’s the very first person in the world to successfully overcome all the regulatory barriers and the scientific barriers to introduce this new type of stem cell into a patient. And she’s done so for a condition of blindness called macular degeneration, which affects millions of people world wide, and for which there are very few treatments currently. We are honoring her with this prize for her pioneering efforts at making this technology one that can be applied to patients.

The new world that iPS cells will bring

As part of the ceremony, Dr. Takahashi gave a scientific talk on the new world that iPS cells will bring for patients with diseases that lack cures, including those with visual impairments. The Stem Cellar team was lucky enough to interview Dr. Takahashi as well as attend her lecture during the Gladstone ceremony. We will cover both her talk and her interview with CIRM in an upcoming blog.

The Stem Cellar team at CIRM was excited to attend this momentous occasion, and to know that CIRM-funding has supported many researchers in the field of iPS cell therapy and regenerative medicine. We would like to congratulate Dr. Takahashi on her impressive and impactful accomplishments in this area and look forward to seeing progress in iPS cell trial for macular degeneration.


 

Related Links:

More than Meets the Eye: Stem Cells Generated using Different Methods Produce Different Types of Cells

What’s the best way to make a fully versatile, ‘pluripotent,’ stem cell? Three different methods each have their pluses and minuses. But now new research has found that the stem cells created by each method, while similar on the surface, show vast differences.

The findings, published online today in the journal Nature, reveal new insights into stem cells’ underlying cellular machinery—which is of utmost importance as researchers transform their discoveries from the lab and into much-needed therapies for patients.

Scanning electron micrograph of cultured human neuron from induced pluripotent stem cell.  [Credit: Mark Ellisman and Thomas Deerinck, National Center for Microscopy and Imaging Research, UC San Diego]

Scanning electron micrograph of cultured human neuron from induced pluripotent stem cell. [Credit: Mark Ellisman and Thomas Deerinck, National Center for Microscopy and Imaging Research, UC San Diego]

Stem cells have held promise for regenerating tissues, or even organs, lost or damaged by injury or disease. This is due to stem cells’ ‘pluripotency’—their ability to transform into virtually any cell in the body. Initially, scientists used stem cells extracted from unused embryos that consenting couples had donated to research. But the use of these so-called embryonic stem cells, or ES cells, has since been limited due to ethical considerations and early limits to federal funding.

So scientists have been on the hunt for an alternative method of creating pluripotent cells. And so far, they have come up with two.

One, called somatic cell nuclear transfer (SCNT) takes the genetic material of an adult cell and transplants it into an unfertilized egg. The second method transforms adult cells, such as skin or blood, back into embryonic-like stem cells—called induced pluripotent stem cells, or iPS cells—by manipulating various genes.

Each of the newer methods has its pluses and minuses—but which produces cells that most closely resemble ES cells, still considered the “Gold Standard” in stem cell biology? Since the success of the SCNT technique is so recent, no one had taken a close look until now. So a collaboration of researchers from the University of California, San Diego (UCSD), The Salk Institute for Biological Sciences and Oregon Health & Science University (OHSU), compared the two methods side by side. And what they found was surprising.

Dr. Louise Laurent, co-senior author from UCSD, explained in today’s news release:

“The nuclear transfer ES cells are much more similar to real ES cells than the iPS cells. They are more completely reprogrammed and have fewer alterations in gene expression and DNA methylation levels that are attributable to the reprogramming process itself.”

iPS cell technology, which was pioneered in 2006 by Shinya Yamanaka, offers a series of advantages over traditional ES cells. As Laurent continued:

“The ability to make personalized iPS cells from a patient that could be transplanted back into that patient has generated excitement because it would eliminate the need for immunosuppression.”

iPS cells have generated so much excitement, in fact, that Yamanaka was awarded the 2012 Nobel Prize in Physiology or Medicine for developing this technique.

The SCNT method was developed more recently by OHSU’s Dr. Shoukhrat Mitalipov. The current researchers generated lines of cells using both methods. After confirming that each line was, in fact, pluripotent, they used advanced genomics techniques to examine the biochemical process called ‘DNA methylation’ in each line.

DNA methylation is a fundamental chemical process within each cell. It’s responsible for switching key genes on and off at precise intervals. In recent years, researchers have discovered that the order and timing of this process is vital for the correct development of the cell. As Dr. Joseph Ecker, co-senior author from the Salk Institute, explained:

“If you believe that gene expression and DNA methylation are important, which we do, the closer you get to the patterns of embryonic cells, the better. Right now, nuclear transfer cells look closer to the embryonic stem cells than do the iPS cells.”

However, while the scientists confirmed that SCNT cells more closely resemble ES cells, the process of producing them is far from ideal. First, the SCNT method is technically difficult. And second, federal funds still cannot be used in this procedure—representing a significant hurdle to being widely adopted.

On the other hand, iPS cell generation is, by comparison, a much easier process technically. So perhaps these findings can spur the development of an improved method, taking the technological ease of iPS cell generation and marrying it with the accuracy of the SCNT method. Laurent argues that this could yield a new and improved approach:

“Our results have shown that widely used iPS cell reprogramming methods make cells that are similar to standard ES cells in broad strokes, but there are important differences when you look really closely. By using the egg cell to do the job, we can get much closer to the real thing. If we can figure out what factors in the egg drive the reprogramming process, maybe we can design a better iPS cell reprogramming method.”