Stem cell stories that caught our eye: 3 blind mice no more and a tale of two tails

Stem cell image of the week: The demise of Three Blind Mice nursery rhyme (Todd Dubnicoff)
Our stem cell image of the week may mark the beginning of the end of the Three Blind Mice nursery rhyme and, more importantly, usher in a new treatment strategy for people suffering from vision loss. That’s because researchers from Icahn School of Medicine at Mount Sinai, New York report in Nature the ability to reprogram support cells in the eyes of blind mice to become photoreceptors, the light-sensing cells that enable sight. The image is an artistic rendering of the study results by team led Dr. Bo Chen, PhD.

Aug16_2018_BoChen_MullerGlia_Eye3930249103

An artist’s rendering incorporates the images of the Müller glia-derived rod photoreceptors. Image credit: Bo Chen, Ph.D.

The initial inspiration for this project came from an observation in zebrafish. These creatures have the remarkable ability to restore vision after severe eye injuries. It turns out that, in response to injury, a type of cell in the eye called Muller glia – which helps maintain the structure and function of the zebrafish retina – transforms into rod photoreceptors, which allow vision in low light.

Now, Muller glia are found in humans and mice too, so the research team sought to harness this shape-shifting, sight-restoring ability of the Muller glia but in the absence of injury. They first injected a gene into the eyes of mice born blind that stimulated the glia cells to divide and grow. Then, to mimic the reprogramming process seen in zebrafish, specific factors were injected to cause the glia to change identity into photoreceptors.

The researchers showed that the glia-derived photoreceptors functioned just like those observed in normal mice and made the right connections with nerve cells responsible for sending visual information to the brain. The team’s next steps are to not only show the cells are functioning properly in the eye and brain but to also do behavioral studies to confirm that the mice can do tasks that require vision.

If these studies pan out, it could lead to a new therapeutic strategy for blinding diseases like retinitis pigmentosa and macular degeneration. Rather than transplanting replacement cells, this treatment approach would spur our own eyes to repair themselves. In the meantime, CIRM-funded researchers have studies currently in clinical trials testing stem cell-based treatments for retinitis pigmentosa and macular degeneration.

A tale of two tails: one regenerates, the other, not quite so much (Kevin McCormack) One of the wonders of nature, well two if you want to be specific, is how both salamanders and lizards are able to regrow their tails if they lose them. But there is a difference. While salamanders can regrow a tail that is almost identical to the original, lizard’s replacements are rather less impressive. Now researchers have found out why.

081518_LR_regeneration_inline_730

In these fluorescence microscopy images, cross sections of original lizard and salamander tails (left) show cartilage (green) and nerve cells (red). In the regenerated tails (right), the lizard’s is made up mostly of cartilage, while the salamander also has developed new nerve cells. Image: Thomas Lozito

The study, published in the Proceedings of the National Academy of Sciences, shows how a lizard’s new tail doesn’t have bone but instead has cartilage, and also lacks nerve cells. The key apparently is the stem cells both use to regenerate the tail. Salamanders use neural stem cells from their spinal cord and turn them into other types of nervous system cell, such as neurons. Lizards neural stem cells are not able to do this.

The researchers, from the University of Pittsburgh, tested their findings by placing neural stem cells from the axolotl salamander into tail stumps from geckos. They noted that, as those tails regrew, some of those transplanted cells turned into neurons.

In an interview in Science News, study co-author Thomas Lozito says the team hope to take those findings and, using the CRISPR/Cas9 gene-editing tool, see if they can regenerate body parts in other animals:

 “My goal is to make the first mouse that can regenerate its tail. We’re kind of using lizards as a stepping-stone.”

A Tale of Two Stem Cell Treatments for Growing New Bones

Got Milk?

GotmilkIf you grew up during the 90’s, you most certainly will remember the famous “Got Milk?” advertising campaign to boost milk consumption. The plug was that milk was an invaluable source of calcium, a mineral that’s essential for growing strong bones. Drinking three glasses of the white stuff a day, supposedly would help deter osteoporosis, or the weakening and loss of bone with old age.

Research has proven that calcium is essential for growing and maintaining healthy bones. But milk isn’t the only source of calcium in the human diet, and a diet rich in calcium alone won’t prevent everyone from experiencing some amount of bone loss as they grow older. It also won’t help patients who suffer from bone skeletal defects grow new bone.

So whatever are we to do about bone loss and bone abnormalities? Here, we tell the “Tale of two stem cell treatments” where scientists tackle these problems using stem cell-derived therapies.

Protein Combo Boosts Bone Growth

Osteoporosis. (Image source)

Osteoporosis. (Image source)

Our first story comes from a CIRM-funded team of UCLA scientists. This team is interested in developing a better therapy to treat bone defects and osteoporosis. The current treatment for bone loss is an FDA-approved bone regenerating therapy involving the protein BMP-2 (bone morphogenetic protein-2). The problem with BMP-2 is that it can cause serious side effects when given in high doses. Two of the major ones are abnormal bone growth and also making stem cells turn into fat cells as well as bone cells.

The UCLA group attempted to improve the BMP-2 treatment by adding a second protein called NELL-1 (which they knew was good at stimulating bone growth from previous studies).  The combination of BMP-2 and NELL-1 resulted in bone growth and also prevented stem cells from making fat cells.

Upon further exploration, they found that NELL-1 acts as a signaling switch that controls whether a stem cell becomes a bone cell or a fat cell. Thus, with NELL-1 present, BMP-2 can only turn stem cells into bone cells.

Kang Ting, a lead author on the study, explained the significance of their new strategy to improve bone regeneration in a UCLA press release:

Kang Ting, UCLA

Kang Ting, UCLA

“Before this study, large bone defects in patients were difficult to treat with BMP2 or other existing products available to surgeons. The combination of NELL-1 and BMP2 resulted in improved safety and efficacy of bone regeneration in animal models — and may, one day, offer patients significantly better bone healing.”

Chia Soo, another lead author on the study, emphasized the importance of using NELL-1 in combination with BMP-2:

“In contrast to BMP2, the novel ability of NELL-1 to stimulate bone growth and repress the formation of fat may highlight new treatment approaches for osteoporosis and other therapies for bone loss.”

Stem cells that could fix deformed skulls

Our second story comes from a group at the University of Rochester. Their goal is to repair bones in the face and skull of patients suffering from congenital deformities, or damage due to injury or cancer surgery.

In a report published in Nature Communications, the scientists identified a population of skeletal stem cells that orchestrate the formation of the skull and can promote craniofacial bone repair in mice.

They identified this special population of skeletal stem cells by their expression of a protein called Axin2. Genetic mutations in the Axin2 gene can cause a birth defect called craniosynostosis. This condition causes the bone plates of a baby’s skull to fuse too early, causing skull deformities and impaired brain development.

1651177064_WeiHsu-stem cell photo_4487_275x200

Axin2 stem cells shown in red and blue generated new bones cells after transplantation.

According to a news release from the University of Rochester, the group’s “latest evidence shows that stem cells central to skull formation are contained within Axin2 cell populations, comprising about 1 percent—and that the lab tests used to uncover the skeletal stem cells might also be useful to find bone diseases caused by stem cell abnormalities.”

Additionally, senior author on the study, Wei Hsu, “believes his findings contributee to an emerging field involving tissue engineering that uses stem cells and other materials to invent superior ways to replace damaged craniofacial bones in humans due to congenital disease, trauma, or cancer surgery.”

Two different studies, one common goal

Both studies have a common goal: to repair or regenerate bone to treat bone loss, damage, or deformities. I can’t help but wonder whether these different strategies could be combined in a way to that would bring more benefit to the patient than using either strategy alone.

Could we use BMP-2 and NELL-1 treatment along with Axin2 skeletal stem cells to treat craniosynostosis or repair damaged skulls? Or could we identify new stem cell populations in bone that would help patients suffering from osteoporosis?

I’m sure scientists will answer these questions sooner rather than later, and when they do, you’ll be sure to read about it on the Stem Cellar!


Related Links:

A Fishy Tale: A gene that blocks regeneration in fish blocks cancer in humans

Evolution is a fascinating thing. Over time, the human race has evolved from cavemen to a bustling civilization fueled by technology, science, and economics. While we’ve gained many abilities that separate us from other mammals and our closest ancestors, the apes, we’ve also lost a number of skills along the way.

One of them is the ability to regenerate. Some animals such as lizards, fish, and frogs, have a robust capacity to regenerate entire limbs and organs while humans can only partially regenerate some tissues and organs on a much smaller scale. Why did we lose this advantageous trait?

A human gene that stops cancer also blocks regeneration

Image courtesy of Flickr.

Zebrafish. (Image courtesy of Flickr)

Scientists from UCSF have found a new piece to this evolutionary puzzle in a paper published today in eLife. They found that a gene responsible for preventing cells from growing uncontrollably into deadly cancers in humans is also able to block tissue regeneration in zebrafish.

Detailed in a UCSF news release, professor and senior author on the study, Jason Pomerantz, was always intrigued by why humans can’t regenerate limbs like salamanders. To answer these questions, he turned to model organisms like fish and amphibians:

Jason Pomerantz, UCSF

Jason Pomerantz, UCSF

In the last 10 to 15 years, as regenerative organisms like zebrafish have become genetically tractable to study in the lab, I became convinced that these animals might be able to teach us what is possible for human regeneration. Why can these vertebrates regenerate highly complex structures, while we can’t?

 

Like other scientists, Pomerantz was curious to know if humans “grew out of” their regenerative abilities in order to acquire systems that block cancer growth. Humans and other mammals have genes called tumor-suppressors that are important for regulating tissue differentiation during development and for preventing excessive cell growth and tumor formation after birth and beyond. Many of these tumor suppressor genes are conserved across a wide range of species, but Pomerantz knew of one that wasn’t shared between humans and regenerative animals, a gene called ARF.

Pomerantz and his team decided to see what happened when they added the human Arf gene into the genome of a highly regenerative animal, the zebrafish. While the addition of ARF did not affect zebrafish development, it did almost fully block their ability to regrow their tail fins after the tips were removed.

Normal zebrafish can regrow their tail fins after they are clipped, but fish that have the ARF gene cannot. (eLife)

Normal zebrafish can regrow their tail fins after they are clipped (top) , but fish that have the human ARF gene cannot (bottom). (Image from eLife)

Pomerantz explained ARF’s anti-regenerative role in the fish:

“It’s like the gene is mistaking the regenerating fin cells for aspiring cancer cells. And so it [ARF] springs into action to block it.”

Is Wolverine our future?

Wolverine. (Courtesy of wired.com)

Marvel’s Wolverine has regenerative powers. (Courtesy of wired.com)

Knowing that ARF suppresses tissue regeneration in fish, the obvious question that arises from this study is whether blocking the Arf gene in humans would promote tissue regeneration. Would doing this mean we could all be regenerative super heroes like Wolverine one day?

Pomerantz explained further in the UCSF new release that boosting regeneration in humans that need new organs or limbs could be possible but would require a careful balance to avoid setting off rampant tumor growth:

Future efforts to promote regeneration in humans will likely require carefully balanced suppression of this anti-tumor system. The same pathway in humans theoretically could be blocked to enhance researchers’ ability to grow model organs from stem cells in a laboratory dish, to enhance patients’ recovery from injury. Since tumor suppressors are thought to play a role in aging by limiting the rejuvenating potential of stem cells, blocking this pathway could even be a part of future anti-aging therapies.

Scientists will likely have to weigh the risks and benefits for human tissue regeneration on a case by case basis. Pomerantz concluded with this admission:

The ratio of risk and benefit has to be appropriate. For instance, there are certain congenital diseases that cause craniofacial deformities so severe that the risks of such a treatment might be clinically reasonable.

 

Patching up a Broken Heart with FSTL1

Get-Over-Heartbreak-Step-08How do you mend a broken heart? It’s a subject that songwriters have pondered for generations, without success. But if you pose the same question to a heart doctor, they would give you a number of practical options that focus on the prevention or management of the physical symptoms you are dealing with.

That’s because heart disease is complicated. There are many different types of diseases that affect the health and function of the heart. And once damage happens to your heart, say from a heart attack, it’s really hard to fix.

New regenerative factor for heart disease

Scientists from Stanford University, the University of California, San Diego, and the Sanford-Burnham-Prebys Medical Discovery Institute have teamed up to figure out how to fix a broken heart. In a CIRM-funded study published today in the journal Nature, the group reported that the gene follistatin-like 1 (FSTl1) has the ability to regenerate heart tissue when it’s delivered within a patch to the injured heart.

2004_Heart_Wall

The different layers of the heart.

The wall of the heart is made up of three different layers: the endocardium (inner), myocardium (middle), and epicardium (outer). The epicardium not only protects the inner two layers of the heart, but also supports the growth of the fetal heart.

The group decided to study epicardial cells to determine whether these cells produced specific factors that protect or even regenerate adult heart tissue. They took epicardial cells from rodents and cultured them with heart cells (called cardiomyocytes), and found that the heart cells divided and reproduced much more quickly when cultured with the epicardial cells. This suggested that the epicardial cells might secrete factors that promote the expansion of the heart cells.

Patching up a broken heart

They next asked whether factors secreted from epicardial cells could improve heart function in mice after heart injury. They designed and engineered tiny patches that contained a cocktail of special epicardial factors and sewed them onto the heart tissue of mice that had just experienced the equivalent of a human heart attack. When they monitored these mice two weeks later, they saw an improvement in heart function in mice with the patch compared to mice without.

When they analyzed the cocktail of epicardial factors in the patch, they identified one factor that had potential for regenerating heart tissue. It was FSTL1. To test its regenerative abilities, they cultured rodent heart cells in a dish and treated them with FSTL1 protein. This treatment caused the heart cells to divide like crazy, thus proving that FSTL1 had regenerative qualities.

Moving from the dish into animal models, the scientists explored which layers of the heart FSTL1 was expressed in after heart injury. In healthy hearts, FSTL1 is expressed in the epicardium. However, in injured hearts, they found that FSTL1 expression was missing in the epicardium and was instead present in the middle layer of the heart, the myocardium.

FSTL1 to the rescue

patch

Cross sections of a healthy (control) or injured mouse heart. Injured hearts treated with patches containing FSTL1 show the most recovery of healthy heart tissue (red). Image adapted from Wei et al. 2015)

In a eureka moment, the scientists decided to add a FSTL1 protein back to the epicardial layer of the heart, post heart injury, using the same patch system they used earlier in mice, to see whether this would promote heart tissue regeneration. Their guess was correct. FSTL1 delivery through the engineered epicardium patch system resulted in a number of beneficial effects to the heart including better function and survival, reduced scar tissue build up (a consequence of heart injury), and increased blood flow to the area of the patch.

Upon further inspection, they found that the FSTL1 epicardial patch caused heart cells to divide and proliferate. The same effect did not happen when FSTL1 is expressed in the myocardium layer of the injured heart.

To make sure their findings translated to other animal models, they studied the regenerative effects of FSTL1 in a pig model of heart injury. They applied patches infused with FSTL1 to the injured heart and as expected, observed that FSTL1 delivery improved symptoms and caused heart cells to divide.

No more heartbreak?

The authors concluded that heart injury turns off the activity of an important factor, FSTL1, in specific heart cells needed for heart regeneration. By turning on FSTL1 back on in the epicardium after injury, heart cells will receive the signal to divide and regenerate heart tissue.

Co-first author and CIRM postdoctoral scholar Ke Wei spoke to CIRM about the next steps for this study and its relevance:

Ke Wei

Co-first author, Ke Wei

In the future, we hope that our engineered epicardium patch technology can be used as a clinical platform to deliver drugs or cells to the injured heart. This strategy differs from conventional tools to treat heart attack, and may provide a novel approach in our repertoire battling heart diseases.

Thus it seems that scientists have found a potential way to patch-up a broken heart and to extend a lifeline for those suffering from heart disease. It’s comforting to know that the regenerative abilities of FSTl1 will be explored in human models and will hopefully reach clinical trials.

Ke Wei (UCSD, Sanford-Burnham-Prebys) and Vahid Serpooshan (Stanford) were co-first authors on this study. The senior authors were Daniel Bernstein (Stanford), Mark Mercola (UCSD, Sanford-Burnham-Prebys), and Pilar Ruiz-Lozano (Stanford). Both Ke Wei and Mark Mercola received CIRM funding for this study.


Related Links:

Body’s own Healing Powers Could be Harnessed to Regrow Muscle, Wake Forest Study Finds

Imagine being able to repair muscle that had been damaged in an injury, not by transplanting new muscle or even by transplanting cells, but rather simply by laying the necessary groundwork—and letting the body do the rest.

The ability for the human body to regenerate tissues lost to injury or disease may still be closer to science fiction than reality, but scientists at the Wake Forest Baptist Medical Center in Winston-Salem, North Carolina, have gotten us one big step closer.

Reporting in the latest issue of the journal Acta Biomaterialia, Dr. Sang Jin Lee and his research team describe their ingenious new method for regrowing damaged muscle tissue in laboratory rodents—by supercharging the body’s own natural restorative abilities. As Lee explained in a news release:

“Working to leverage the body’s own regenerative properties, we designed a muscle-specific scaffolding system that can actively participate in functional tissue regeneration. This is a proof-of-concept study that we hope can one day be applied to human patients.”

Normally, the body’s muscles—as well as the majority of organs—sit atop a biological ‘scaffold’ created by a matrix of molecules secreted by surrounding cells. This scaffold gives the organs and muscle their three-dimensional structure.

Scientists have identified a protein that may help spur 'in body' muscle regeneration.

Scientists have identified a protein that may help spur ‘in body’ muscle regeneration.

As of right now, if doctors want to replace damaged muscle they have one of two options: either surgically transfer a muscle segment from one part of the body to the other, or engineer replacement muscle tissue in the lab from a biopsy. Both methods, while doable, are not ideal. In the first, you are reducing the strength of the donor muscle; in the second, you have the added challenge of standardizing the engineered cells so that they will graft successfully.

So, Lee and his team focused on a third way: coaxing the body’s own supply of adult stem cells—which are tissue specific and normally used for general small-scale maintenance—to rebuild the damaged muscle from within. Said Lee:

“Our aim was to bypass the challenges of both of these techniques and to demonstrate the mobilization of muscle cells to a target-specific site for muscle regeneration.”

In this study, the researchers developed a method to do just that in the laboratory animals. First, they implanted a new cellular scaffold into the rodents’ legs. After several weeks, they removed the scaffold to see whether any cells had latched on of their own accord.

Interestingly, the team found that without any additional manipulation, the scaffold had developed a network of blood vessels within just four weeks after implanting. They also observed the presence of some early-stage muscle cells. What the researchers wanted to do next was find a way to boost what they already observed naturally.

To do so, they tested whether proteins—previously known to be involved in muscle development—could boost the speed and amount of recruitment of muscle stem cells to the scaffold.

After a series of experiments, they found a leading candidate: a protein called insulin-like growth factor 1, or IGF-1. And when they injected IGF-1 into the newly-implanted scaffolds the difference was remarkable. These scaffolds had about four times as many cells when compared to the plain scaffolds. As Lee explained:

“The protein effectively promoted cell recruitment and accelerated muscle regeneration.”

The real work now begins, added Lee, whose team will now take their research to larger animal models, such as pigs, to see whether their technique can work on a far grander scale.