Making a deposit in the Bank: using stem cells from children with rare diseases to find new treatments

Part of The Stem Cellar series on ten years of iPS cells

chris-waters-580-by-388

For Chris Waters, the motivation behind her move from big pharmaceutical companies and biotech to starting a non-profit organization focused on rare diseases in children is simple: “What’s most important is empowering patient families and helping them accelerate research to the clinical solutions they so urgently need for their child ,” she says.

Chris is the founder of Rare Science. Their mission statement – Accelerating Cures for RARE Kids – bears a striking resemblance to ours here at CIRM, so creating a partnership between us just seemed to make sense. At least it did to Chris. And one thing you need to know about Chris, is that when she has an idea you should just get out of the way, because she is going to make it happen.

“The biggest gap in drug development is that we are not addressing the specific needs of children, especially those with rare diseases.  We need to focus on kids. They are our future. If it takes 14 years and $2 billion to get FDA approval for a new drug, how is that going to help the 35% of the 200 million children across the world that are dying before 5 years of age because they have a rare disease? That’s why we created Rare Science. How do we help kids right now, how do we help the families? How do we make change?”

Banking on CIRM for help

One of the changes she wanted to make was to add the blood and tissue samples from one of the rare disease patient communities she works with to the CIRM Induced Pluripotent Stem Cell Bank. This program is collecting samples from up to 3,000 Californians – some of them healthy, some suffering from diseases such as autism, Alzheimer’s, heart, lung and liver disease and blindness. The samples will be turned into iPS cells – pluripotent stem cells that have the ability to be turned into any other type of cell in the body – enabling researchers to study how the diseases progress, and hopefully leading to the development of new therapies.

 

lilly-grossman

Lilly Grossman: photo courtesy LA Times

Chris says many kids with rare diseases can struggle for years to get an accurate diagnosis and even when they do get one there is often nothing available to help them. She says one San Diego teenager, Lilly Grossman, was originally diagnosed with Cerebral Palsy and it took years to identify that the real cause of her problems was a mutation in a gene called ADCY5, leading to abnormal involuntary movement. At first Lily’s family felt they were the only ones facing this problem. They have since started a patient family organization (ADCY5.org) that supports others with this condition.

“Even though we know that the affected individuals have the gene mutation, we have no idea how the gene causes the observable traits that are widely variable across the individuals we know.  We need research tools to help us understand the biology of ADCY5 and other rare disease – it is not enough to just know the gene mutation. We always wanted to do a stem cell line that would help us get at these biological questions.”

Getting creative

But with little money to spend Chris faced what, for an ordinary person, might have been a series of daunting obstacles. She needed consent forms so that everyone donating tissue, particularly the children, knew exactly what was involved in giving samples and how those samples would be used in research.  She also needed materials to collect the samples. In addition she needed to find doctors and sites around the world where the families were located to help with the sample collection.  All of this was going to cost money, which for any non-profit is always in short supply.

So she went to work herself, creating a Research Participant’s Bill of Rights – a list of the rights that anyone taking part in medical research has. She developed forms explaining to children, teenagers and parents what happens if they give skin or blood samples as part of medical research, telling them how an individual’s personal medical health history may be used in research studies. And then she turned to medical supply companies and got them to donate the tubes and other materials that would be needed to collect and preserve the tissue and blood samples.

Even though ADCY5 is a very rare condition, Chris has collected samples from 42 individuals representing 13 different families, some affected with the condition as well as their unaffected siblings and parents. These samples come from families all around the world, from the US and Europe, to Canada and Australia.

“With CIRM we can build stem cell lines. We can lower the barrier of access for researchers who want to utilize these valuable stem cell lines that they may not have the resources to generate themselves.  The cell lines, in the hands of researchers, can potentially accelerate understanding of the biology. They can help us identify targets to focus on for therapies. They can help us screen currently approved medications or drugs, so we have something now that could help these kids now, not 14 years from now.”

The samples Chris collects will be made available to researchers not just here in the US, but around the world. Chris hopes this program will serve as a model for other rare diseases, creating stem cell lines from them to help close the gap between discovery research and clinical impact.

Rare bears for rare disease

But in everything she does, in the end it always comes down to the patient families. Chris says so many children and families battling a rare disease feel they are alone. So she created with her team, the RARE Bear program to let them know they aren’t alone, that they are part of a worldwide community of support. She says each bear is handmade by the RARE Bear Army which spans 9 countries including 45 states in the US.  Each RARE Bear is different, because “they are all one of a kind bears for one of a kind kids. And that’s why we are here, to help rare kids one bear at a time.”  The RARE Bear program, also helps with rare disease awareness, patient outreach and rare disease community building which is key for RARE Science Research Programs.

It’s working. Chris recently got this series of photos and notes from the parents of a young girl in England, after they got their bear.

“I wanted to say a huge heartfelt thank you for my daughters Rare bear. It arrived today to Essex, England & as you can see from my pictures Isabella loves her already! We have named her Faith as a reminder to never give up!”