Celebrating Exciting CIRM-Funded Discovery Research on World Parkinson’s Day

April 11th is World Parkinson’s Disease Awareness Day. To mark the occasion, we’re featuring the work of CIRM-funded researchers who are pursuing new, promising ideas to treat patients with this debilitating neurodegenerative disease.


Birgitt Schuele, Parkinson’s Institute

CIRM Grant: Quest Award – Discovery Stage Research

Research: Birgitt and her team at the Parkinson’s Institute in Sunnyvale, California, are using CRISPR gene editing technology to reduce the levels of a toxic protein called alpha synuclein, which builds up in the dopaminergic brain cells affected by Parkinson’s disease.

Birgitt Schuele

“My hope is that I can contribute to stopping disease progression in Parkinson’s. If we can develop a drug that can get rid of accumulated protein in someone’s brain that should stop the cells from dying. If someone has early onset PD and a slight tremor and minor walking problems, stopping the disease and having a low dose of dopamine therapy to control symptoms is almost a cure.”

Parkinson’s disease in a dish. Dopaminergic neurons made from Parkinson’s patient induced pluripotent stem cells. (Image credit: Birgitt Schuele)


Jeanne Loring, Scripps Research Institute

CIRM Grant: Quest Award – Discovery Stage Research

Research: Jeanne Loring and her team at the Scripps Research Institute in La Jolla, California, are deriving dopaminergic neurons from the iPSCs of Parkinson’s patients. Their goal is to develop a personalized, stem cell-based therapy for PD.

Jeanne Loring

“We are working toward a patient-specific neuron replacement therapy for Parkinson’s disease.  By the time PD is diagnosed, people have lost more than half of their dopamine neurons in a specific part of the brain, and loss continues over time.  No drug can stop the loss or restore the neurons’ function, so the best possible option for long term relief of symptoms is to replace the dopamine neurons that have died.  We do this by making induced pluripotent stem cells from individual PD patients and turning them into the exact type of dopamine neuron that has been lost.  By transplanting a patient’s own cells, we will not need to use potentially dangerous immunosuppressive drugs.  We plan to begin treating patients in a year to two years, after we are granted FDA approval for the clinical therapy.”

Skin cells from a Parkinson’s patient (left) were reprogrammed into induced pluripotent stem cells (center) that were matured into dopaminergic neurons (right) to model Parkinson’s disease. (Image credit: Jeanne Loring)


Justin Cooper-White, Scaled BioLabs Inc.

CIRM Grant: Quest Award – Discovery Stage Research

Research: Justin Cooper-White and his team at Scaled Biolabs in San Francisco are developing a tool that will make clinical-grade dopaminergic neurons from the iPSCs of PD patients in a rapid and cost-effective manner.

Justin Cooper-White

“Treating Parkinson’s disease with iPSC-derived dopaminergic neuron transplantation has a strong scientific and clinical rationale. Even the best protocols are long and complex and generally have highly variable quality and yield of dopaminergic neurons. Scaled Biolabs has developed a technology platform based on high throughput microfluidics, automation, and deep data which can optimize and simplify the road from iPSC to dopaminergic neuron, making it more efficient and allowing a rapid transition to GMP-grade derivation of these cells.  In our first 6 months of CIRM-funded work, we believe we have already accelerated and simplified the production of a key intermediate progenitor population, increasing the purity from the currently reported 40-60% to more than 90%. The ultimate goal of this work is to get dopaminergic neurons to the clinic in a robust and economical manner and accelerate treatment for Parkinson’s patients.”

High throughput differentiation of dopaminergic neuron progenitors in  microbioreactor chambers in Scaled Biolabs’ cell optimization platform. Different chambers receive different differentiation factors, so that optimal treatments for conversion to dual-positive cells can be determined (blue: nuclei, red: FOXA2, green: LMX1A).


Xinnan Wang, Stanford University

CIRM Grant: Basic Biology V

Research: Xinnan Wang and her team at Stanford University are studying the role of mitochondrial dysfunction in the brain cells affected in Parkinson’s disease.

Xinnan Wang

“Mitochondria are a cell’s power plants that provide almost all the energy a cell needs. When these cellular power plants are damaged by stressful factors present in aging neurons, they release toxins (reactive oxygen species) to the rest of the neuron that can cause neuronal cell death (neurodegeneration).  We hypothesized that in Parkinson’s mutant neurons, mitochondrial quality control is impaired thereby leading to neurodegeneration. We aimed to test this hypothesis using neurons directly derived from Parkinson’s patients (induced pluripotent stem cell-derived neurons).”

Dopaminergic neurons derived from human iPSCs shown in green, yellow and red. (Image credit: Atossa Shaltouki, Stanford)


Related Blogs:

Could the Answer to Treating Parkinson’s Disease Come From Within the Brain?

Sometimes a solution to a disease doesn’t come in the form of a drug or a stem cell therapy, but from within ourselves.

Yesterday, scientists from the Karolinska Institutet in Sweden reported an alternative strategy for treating Parkinson’s disease that involves reprogramming specific cells in the brain into the nerve cells killed off by the disease. Their method, which involves delivering reprogramming genes into brain cells called astrocytes, was able to alleviate motor symptoms associated with Parkinson’s disease in mice.

What is Parkinson’s Disease and how is it treated?

Parkinson’s disease (PD) is a progressive neurodegenerative disease that’s characterized by the death of dopamine-producing nerve cells (called dopaminergic neurons) in an area of the brain that controls movement.

Dopaminergic neurons grown in a culture dish. (Image courtesy of Faria Zafar, Parkinson’s Institute).

PD patients experience tremors in their hands, arms and legs, have trouble starting and stopping movement, struggle with maintaining balance and have issues with muscle stiffness. These troublesome symptoms are caused by a lack dopamine, a chemical made by dopaminergic neurons, which signals to the part of the brain that controls how a person initiates and coordinates movement.

Over 10 million people in the world are affected by PD and current therapies only treat the symptoms of the disease rather than prevent its progression. Many of these treatments involve drugs that replace the lost dopamine in the brain, but these drugs lose their effectiveness over time as the disease kills off more neurons, and they come with their own set of side effects.

Another strategy for treating Parkinson’s is replacing the lost dopaminergic neurons through cell-based therapies. However this research is still in its early stages and would require patients to undergo immunosuppressive therapy because the stem cell transplants would likely be allogeneic (from a donor) rather than autologous (from the same individual).

Drug and cell-based therapies both involve taking something outside the body and putting it in, hoping that it does the right thing and prevents the disease. But what about using what’s already inside the human body to fight off PD?

This brings us to today’s study where scientists reprogrammed brain cells in vivo (meaning inside a living organism) to produce dopamine in mice with symptoms that mimic Parkinson’s. Their method, which was published in the journal Nature Biotechnology, was successful in alleviating some of the Parkinson’s-related movement problems the mice had. This study was funded in part by a CIRM grant and received a healthy amount of coverage in the media including STATnews, San Diego Union-Tribune and Scientific American.

Reprogramming the brain to make more dopamine

Since Shinya Yamanaka published his seminal paper on reprogramming adult somatic cells into induced pluripotent stem cells, scientists have taken the building blocks of his technology a step further to reprogram one adult cell type into another. This process is called “direct reprogramming” or “transdifferentiation”. It involves delivering a specific cocktail of genes into cells that rewrite the cells identity, effectively turning them into the cell type desired.

The Karolinska team found that three genes: NEUROD1, ASCL1 and LMX1A combined with a microRNA miR218 were able to reprogram human astrocytes into induced dopaminergic neurons (iDANs) in a lab dish. These neurons looked and acted like the real thing and gave the scientists hope that this combination of factors could reprogram astrocytes into iDANs in the brain.

The next step was to test these factors in mice with Parkinson’s disease. These mice were treated with a drug that killed off their dopaminergic neurons giving them Parkinson’s-like symptoms. The team used viruses to deliver the reprogramming cocktail to astrocytes in the brain. After a few weeks, the scientists observed that some of the “infected” astrocytes developed into iDANs and these newly reprogrammed neurons functioned properly, and more importantly, helped reverse some of the motor symptoms observed in these mice.

This study offers a new potential way to treat Parkinson’s by reprogramming cells in the brain into the neurons that are lost to the disease. While this research is still in its infancy, the scientists plan to improve the safety of their technology so that it can eventually be tested in humans.

Bonus Blog Interview for World Parkinson’s Day

Ernest Arenas, Karolinska Institutet

In honor of World Parkinson’s day (April 11th), I’m providing a bonus blog interview about this research. I reached out to the senior author of this study, Dr. Ernest Arenas, to ask him a few more questions about his publication and the future studies his team is planning.

Q) What are the major findings of your current study and how do they advance research on Parkinson’s disease?

The current treatment for Parkinson’s disease (PD) is symptomatic and does not change the course of the disease. Cell replacement therapies, such as direct in vivo reprogramming of in situ [local] astrocytes into dopamine (DA) neurons, work by substituting the cells lost by disease and have the potential to halt or even reverse motor alterations in PD.

Q) Can you comment on the potential for gene therapy treatments for Parkinson’s patients?

We see direct in vivo reprogramming of brain astrocytes into dopamine neurons in situ as a possible future alternative to DA cell transplantation. This method represents a gene therapy approach to cell replacement since we use a virus to deliver four reprogramming factors. In this method, the donor cells are in the host brain and there is no need to search for donor cells and no cell transplantation or immunosuppression. The method for the moment is an experimental prototype and much more needs to be done in order to improve efficiency, safety and to translate it to humans.

Q) Will reprogrammed iDANs be susceptible to Parkinson’s disease over time?

As any other cell replacement therapy, the cells would be, in principle, susceptible to Parkinson’s disease. It has been found that PD catches up with transplanted cells in 15-20 years. We think that this is a sufficiently long therapeutic window.

In addition, direct in vivo reprogramming may also be performed with drug-inducible constructs that could be activated years after, as disease progresses. This might allow adding more cells by turning on the reprogramming factors with pharmacological treatment to the host. This was not tested in our study but the basic technology to develop such strategies currently exist.

Q) What are your plans for future studies and translating this research towards the clinic?

In our experiments, we used transgenic mice in order to test our approach and to ensure that we only reprogrammed astrocytes. There is a lot that still needs to be done in order to develop this approach as a therapy for Parkinson’s disease. This includes improving the efficiency and the safety of the method, as well as developing a strategy suitable for therapy in humans. This can be achieved by further improving the reprogramming cocktail, by using a virus with a selective tropism [affinity] for astrocytes and that do not incorporate the constructs into the DNA of the host cell, as well as using constructs with astrocyte-specific promoters and capable of self-regulating depending on the cell context.

Our study demonstrates for the first time that it is possible to use direct reprogramming of host brain cells in order to rescue neurological symptoms. These results indicate that direct reprogramming has the potential to become a novel therapeutic approach for Parkinson’s disease and opens new opportunities for the treatment of patients with neurological disorders.

How Parkinson’s disease became personal for one stem cell researcher

April is Parkinson’s disease Awareness Month. This year the date is particularly significant because 2017 is the 200th anniversary of the publication of British apothecary James Parkinson’s “An Essay on the Shaking Palsy”, which is now recognized as a seminal work in describing the disease.

Schuele_headshotTo mark the occasion we talked with Dr. Birgitt Schuele, Director Gene Discovery and Stem Cell Modeling at the Parkinson’s Institute and Clinical Center in Sunnyvale, California. Dr. Schuele recently received funding from CIRM for a project using new gene-editing technology to try and halt the progression of Parkinson’s.

 

 

What got you interested in Parkinson’s research?

People ask if I have family members with Parkinson’s because a lot of people get into this research because of a family connection, but I don’t.  I was always excited by neuroscience and how the brain works, and I did my medical residency in neurology and had a great mentor who specialized in the neurogenetics of Parkinson’s. That helped fuel my interest in this area.

I have been in this field for 15 years, and over time I have gotten to know a lot of people with Parkinson’s and they have become my friends, so now I’m trying to find answers and also a cure for Parkinson’s. For me this has become personal.

I have patients that I talk to every couple of months and I can see how their disease is progressing, and especially for people with early or young onset Parkinson’s. It’s devastating. It has a huge effect on the person and their family, and on relationships, even how they have to talk to their kids about their risk of getting the disease themselves. It’s hard to see that and the impact it has on people’s lives. And because Parkinson’s is progressive, I get to see, over the years, how it affects people, it’s very hard.

Talk about the project you are doing that CIRM is funding

It’s very exciting. The question for Parkinson’s is how do you stop disease progression, how do you stop the neurons from dying in areas affected by the disease. One protein, identified in 1997 as a genetic form of Parkinson’s, is alpha-synuclein. We know from studying families that have Parkinson’s that if you have too much alpha-synuclein you get early onset, a really aggressive form of Parkinson’s.

I followed a family that carries four copies of this alpha-synuclein gene (two copies is the normal figure) and the age of onset in this family was in their mid 30’s. Last year I went to a funeral for one of these family members who died from Parkinson’s at age 50.

We know that this protein is bad for you, if you have too much it kills brains cells. So we have an idea that if you lower levels of this protein it might be an approach to stop or shield those cells from cell death.

We are using CRISPR gene editing technology to approach this. In the Parkinson’s field this idea of down-regulation of alpha-synuclein protein isn’t new, but previous approaches worked at the protein level, trying to get rid of it by using, for example, immunotherapy. But instead of attacking the protein after it has been produced we are starting at the genomic level. We want to use CRISPR as a way to down-regulate the expression of the protein, in the same way we use a light dimmer to lower the level of light in a room.

But this is a balancing act. Too much of the protein is bad, but so is too little. We know if you get rid of the protein altogether you get negative effects, you cause complications. So we want to find the right level and that’s complex because the right level might vary from person to person.

We are starting with the most extreme levels, with people who have twice as much of this protein as is normal. Once we understand that better, then we can look at people who have levels that are still higher than normal but not at the upper levels we see in early-onset Parkinson’s. They have more subtle changes in their production or expression of this protein. It’s a little bit of a juggling act and it might be different for different patients. We start with the most severe ones and work our way to the most common ones.

One of the frustrations I often hear from patients is that this is all taking so long. Why is that?

Parkinson’s has been overall frustrating for researchers as well. Around 100 years ago, Dr. Lewy first described the protein deposits and the main neuropathology in Parkinson’s. About 20 years ago, mutations in the alpha-synuclein gene were discovered, and now we know approximately 30 genes that are associated with, or can cause Parkinson’s. But it was all very descriptive. It told us what is going on but not why.

Maybe we thought it was straight forward and maybe researchers only focused on what we knew at that point. In 1957, the neurotransmitter dopamine was identified and since the 1960s people have focused on Parkinson’s as a dopamine-deficient problem because we saw the amazing effects L-Dopa had on patients and how it could help ease their symptoms.

But I would say in the last 15 years we have looked at it more closely and realized it’s more complicated than that. There’s also a loss of sense of smell, there’s insomnia, episodes of depression, and other things that are not physical symptoms. In the last 10 years or so we have really put the pieces together and now see Parkinson’s as a multi-system disease with neuronal cell death and specific protein deposits called Lewy Bodies. These Lewy Bodies contain alpha-synuclein and you find them in the brain, the gut and the heart and these are organs people hadn’t looked at because no one made the connection that constipation or depression could be linked to the disease. It turns out that Parkinson’s is much more complicated than just a problem in one particular region of the brain.

The other reason for slow progress is that we don’t have really good models for the disease that are predictive for clinical outcomes. This is why probably many clinical trials in the neurodegenerative field have failed to date. Now we have human induced pluripotent stem cells (iPSCs) from people with Parkinson’s, and iPSC-derived neurons allow us to better model the disease in the lab, and understand its underlying mechanisms  more deeply. The technology has now advanced so that the ability to differentiate these cells into nerve cells is better, so that you now have iPSC-derived neurons in a dish that are functionally active, and that act and behave like dopamine-producing neurons in the brain. This is an important advance.

Will this lead to a clinical trial?

That’s the idea, that’s our hope.

We are working with professor Dr. Deniz Kirik at the University of Lund in Sweden. He’s an expert in the field of viral vectors that can be used in humans – it’s a joint grant between us – and so what we learn from the human iPS cultures, he’ll transfer to an animal model and use his gene vector technology to see if we can see the same effects in vivo, in mice.

We are using a very special Parkinson’s mouse model – developed at UC San Francisco – that has the complete human genomic structure of the alpha-synuclein gene. If all goes well, we hope that ultimately we could be ready in a couple of years to think about preclinical testing and then clinical trials.

What are your hopes for the future?

My hope is that I can contribute to stopping disease progression in Parkinson’s. If we can develop a drug that can get rid of accumulated protein in someone’s brain that should stop the cells from dying. If someone has early onset PD and a slight tremor and minor walking problems, stopping the disease and having a low dose of dopamine therapy to control symptoms is almost a cure.

The next step is to develop better biomarkers to identify people at risk of developing Parkinson’s, so if you know someone is a few years away from developing symptoms, and you have the tools in place, you can start treatment early and stop the disease from kicking in, even before you clinically have symptoms.

Thinking about people who have been diagnosed with a disease, who are ten years into the disease, who already have side effects from the disease, it’s a little harder to think of regenerative medicine, using embryonic or iPSCs for this. I think that it will take longer to see results with this approach, but that’s the long-term hope for the future. There are many  groups working in this space, which is critical to advance the field.

Why is Parkinson’s Awareness Month important?

It’s important because, while a lot of people know about the disease, there are also a lot of misconceptions about Parkinson’s.

Parkinson’s is confused with Alzheimer’s or dementia and cognitive problems, especially the fact that it’s more than just a gait and movement problem, that it affects many other parts of the body too.