CIRM-funded development of stem cell therapy for Canavan disease shows promising results

Yanhong Shi, Ph.D., City of Hope

Canavan disease is a fatal neurological disorder, the most prevalent form of which begins in infancy. It is caused by mutation of the ASPA gene, resulting in the deterioration of white matter (myelin) in the brain and preventing the proper transmission of nerve signals.  The mutated ASPA gene causes the buildup of an amino acid called NAA and is typically found in neurons in the brain.  As a result of the NAA buildup, Canavan disease causes symptoms such as impaired motor function, mental retardation, and early death. Currently, there is no cure or standard of treatment for this condition.

Fortunately, CIRM-funded research conducted at City of Hope by Yanhong Shi, Ph.D. is developing a stem cell-based treatment for Canavan disease. The research is part of CIRM’s Translational Stage Research Program, which promotes the activities necessary for advancement to clinical study of a potential therapy.

The results from the study are promising, with the therapy improving motor function, reducing degeneration of various brain regions, and expanding lifespan in a Canavan disease mouse model.

For this study, induced pluripotent stem cells (iPSCs), which can turn into virtually any type of cells, were created from skin cells of Canavan disease patients. The newly created iPSCs were then used to create neural progenitor cells (NPCs), which have the ability to turn into various types of neural cells in the central nervous system. A functional version of the ASPA gene was then introduced into the NPCs. These newly created NPCs were then transplanted inside the brains of Canavan disease mice.

The study also used iPSCs engineered to have a functional version of the ASPA gene. The genetically modified iPSCs were then used to create oligodendrocyte progenitor cells (OPCs), which have the ability to turn into myelin. The OPCs were also transplanted inside the brains of mice.

The rationale for evaluating both NPCs and OPCs was that NPCs typically stayed at the site of injection while OPCs tend to migrate, which might have been important in terms of the effectiveness of the therapy.  However, the results of the study show that both NPCs and OPCs were effective, with both being able to reduce levels of NAA, presumably because NAA can move to where the ASPA enzyme is although NPCs do not migrate.  This resulted in improved motor function, recovery of myelin, and reduction of brain degeneration, in both the NPC and OPC-transplanted Canavan disease mice.

“Thanks to funding from CIRM and the hard work of my team here at City of Hope and collaborators at Center for Biomedicine and Genetics, Department of Molecular Imaging and Therapy, and Diabetes and Metabolism Institute at City of Hope, as well as collaborators from the University of Texas Medical Branch at Galveston, University of Rochester Medical Center, and Aarhus University, we were able to carry out this study which has demonstrated promising results,” said Dr. Shi.  “I hope that these findings can one day bring about an effective therapy for Canavan disease patients, who currently have no treatment options.”

Dr. Shi and her team will build on this research by starting IND-enabling studies using their NPC therapy soon.  This is the final step in securing approval from the Food and Drug Administration (FDA) in order to test the therapy in patients.  

The full study was published in Advanced Science.

Straight to brain: A better approach to ALS cell therapies?

Getting the go ahead to begin a clinical trial by no means marks an end to a research team’s laboratory studies. A clinical trial is merely one experiment and is designed to answer a specific set of questions about a specific course of treatment. There will inevitably be more questions to pursue back in the lab in parallel with an ongoing clinical trial to potentially enhance the treatment.

That’s the scenario for Cedar-Sinai’s current CIRM-funded clinical trial testing a cell therapy for amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease. Animal studies published this week in Stem Cells suggests that an additional route of therapy delivery may have potential and should also be considered.

Print

Microscopy image showing transplanted neural progenitor cells (green), the protein GDNF (red) and motor neurons (blue) together in brain tissue. Credit: Cedars-Sinai Board of Governors Regenerative Medicine Institute

ALS is an incurable disease that destroys motor neurons responsible for communicating muscle movement between the brain and the rest of the body via the spinal cord. ALS sufferers lose the use of their limbs and eventually the muscles that control breathing. They rarely live more than 3 to 5 years after diagnosis.

The CIRM-funded trial uses neural progenitor cells – which are similar to stem cells but can only specialize into different types of brain cells – that are genetically engineered to release a protein called GDNF that helps protect the motor neurons from destruction. These cells are being transplanted into the spinal cords of the clinical trial participants.

While earlier animal studies showed that the GDNF-producing progenitor cells can protect motor neurons in the spinal cord, the researchers also recognized that motor neurons within the brain are also involved in ALS. So, for the current study, the team tested the effects of implanting the GDNF-producing cells into the brains of rats with symptoms mimicking an inherited form of ALS.

The team first confirmed that the cells survived, specialized into the right type of brain cells and released GDNF into the brain. More importantly, they went on to show that the transplanted cells not only protected the motor neurons in the brain but also delayed the onset of the disease and extended the survival of the ALS rats.

These results suggest that future clinical trials should test transplantation of the cells into the brain in addition to the spinal cord. The team will first need to carry out more animal studies to determine the cell doses that would be most safe and effective. As first author Gretchen Thomsen, PhD, mentions in a press release, the eventual benefit to patients could be enormous:

Gretchen-Miller-photo

Gretchen Thomsen

“If we are able in the future to reproduce our research results in humans, we could improve both the quality and length of life for patients diagnosed with this devastating disease.”