The key to unlocking stem cell’s potential and blocking a deadly threat

A small slice of who you are - brain cells made from embryonic stem cells.

A small slice of who you are – brain cells made from embryonic stem cells.

Our bodies are amazingly complex systems. By some estimates there are more than 37 trillion cells in our bodies.  That’s trillion with a “t”. Each of those cells engages in some form of communication and signaling with other cells which makes our bodies one heck of a busy place to be.

Yet all this activity may owe much of its splendor and complexity to a relatively small number of starting materials. Key among those may be one protein which seems to act like a “master switch” and can determine if a cell changes and multiplies, or just stays the same.

Starting out

But let’s begin at the beginning. We all start out as a single fertilized egg that develops into embryonic stem cells, which in turn become adult stem cells, which then give rise to all the different cells and tissues and structures in our body – such as our bones and brains and blood.

But how do those cells know when to change, what to change into, and when to stop? Change too little and something is undeveloped. Change too much and you risk the kind of explosive uncontrolled multiplication of cells that you see in cancer.

So, clearly, knowing what controls those changes in stem cells, and learning how to use it, could have an enormous impact on our ability to use stem cells to treat a wide range of diseases.

What’s in a name, or a number

Now researchers at Mount Sinai have identified a single protein that appears to play a major role in this control process. The protein is called zinc finger protein 217 (ZFP217) and it controls the actions of genes that in turn control whether a cell changes into another kind of cell and how often it keeps dividing and multiplying.

The study is published in Cell Stem Cell  and there is some pretty complex science involved but ultimately what it boils down to is that ZFP217 has an impact on m6A (scientists really need to start coming up with more imaginative names) which is a protein that helps determine if a gene is turned on or off. If turned on the gene performs one function. If turned off it doesn’t.

By, in effect, blocking the action of m6A, ZFP217 is able to stop the process that would allow stem cells to differentiate, or change, into other cells and also ends their ability to keep renewing themselves.

But wait, there’s more!

One other important role that ZFP217 plays is in helping spur the growth of cancerous tumors. Too much of the protein allows these cells to multiply in an unlimited and uncontrolled fashion, typical of the kind of growth we see in tumors.

The study was done in mice but in a news release  the lead study author, Martin Walsh, PhD, talked about the possible significance of the findings for people:

“The hope is that ZFP217 could be used to maintain supplies of therapeutic stem cells. At the same time, as the human ZPF217 is associated with poor survival in a variety of cancers, understanding how this protein operates in physiological conditions may help to predict cancer risk, achieve earlier diagnosis and provide novel therapeutic approaches.”

Having a deeper understanding of what makes some stem cells multiply and change into other cells could enable researchers to better use stem cells to develop new approaches to treating some of the most intractable diseases of our time.

If that happens then ZFP217 might be a name to remember after all.

Stem Cell Scientists Reconstruct Disease in a Dish; Gain Insight into Deadly Form of Bone Cancer

The life of someone with Li-Fraumeni Syndrome (LFS) is not a pleasant one. A rare genetic disorder that usually runs in families, this syndrome is characterized by heightened risk of developing cancer—multiple types of cancer—at a very young age.

People with LFS, as the syndrome is often called, are especially susceptible to osteosarcoma, a form of bone cancer that most often affects children. Despite numerous research advances, survival rates for this type of cancer have not improved in over 40 years.

shutterstock_142552177 But according to new research from Mount Sinai Hospital and School of Medicine, the prognosis for these patients may not be so dire in a few years.

Reporting today in the journal Cell, researchers describe how they used a revolutionary type of stem cell technology to recreate LFS in a dish and, in so doing, have uncovered the series of molecular triggers that cause people with LFS to have such high incidence of osteosarcoma.

The scientists, led by senior author Ihor Lemischka, utilized induced pluripotent stem cells, or iPSCs, to model LFS—and osteosarcoma—at the cellular level.

Discovered in 2006 by Japanese scientist Shinya Yamanaka, iPSC technology allows scientists to reprogram adult skin cells into embryonic-like stem cells, which can then be turned into virtually any cell in the body. In the case of a genetic disorder, such as LFS, scientists can transform skin cells from someone with the disorder into bone cells and grow them in the lab. These cells will then have the same genetic makeup as that of the original patient, thus creating a ‘disease in a dish.’ We have written often about these models being used for various diseases, particularly neurological ones, but not cancer.

“Our study is among the first to use induced pluripotent stem cells as the foundation of a model for cancer,” said lead author and Mount Sinai postdoctoral fellow Dung-Fang Lee in today’s press release.

The team’s research centered on the protein p53. P53 normally acts as a tumor suppressor, keeping cell divisions in check so as not to divide out of control and morph into early-stage tumors. Previous research had revealed that 70% of people with LFS have a specific mutation in the gene that encodes p53. Using this knowledge and with the help of the iPSC technology, the team shed much-needed light on a molecular link between LFS and bone cancer. According to Lee:

“This model, when combined with a rare genetic disease, revealed for the first time how a protein known to prevent tumor growth in most cases, p53, may instead drive bone cancer when genetic changes cause too much of it to be made in the wrong place.”

Specifically, the team discovered that the ultimate culprit of LFS bone cancer is an overactive p53 gene. Too much p53, it turns out, reduces the amount of another gene, called H19. This then leads to a decrease in the protein decorin. Decorin normally acts to help stem cells mature into healthy, bone-making cells, known as osteoblasts. Without it, the stem cells can’t mature. They instead divide over and over again, out of control, and ultimately cause the growth of dangerous tumors.

But those out of control cells can become a target for therapy, say researchers. In fact, the team found that artificially boosting H19 levels could have a positive effect.

“Our experiments showed that restoring H19 expression hindered by too much p53 restored “protective differentiation” of osteoblasts to counter events of tumor growth early on in bone cancer,” said Lemischka.

And, because mutations in p53 have been linked to other forms of bone cancer, the team is optimistic that these preliminary results will be able to guide treatment for bone cancer patients—whether they have LFS or not. Added Lemischka:

“The work has implications for the future treatment or prevention of LFS-associated osteosarcoma, and possibly for all forms of bone cancer driven by p53 mutations, with H19 and p53 established now as potential targets for future drugs.”

Learn more about how scientists are using stem cell technology to model disease in a dish in our special video series: Stem Cells In Your Face: