CIRM-funded kidney transplant procedure eyeing faster approval

Kidney transplant surgery.

Medeor Therapeutics, which is running a CIRM-funded clinical trial to help people getting kidney transplants, just got some really good news. The US Food and Drug Administration (FDA) has just granted their product Regenerative Medicine Advanced Therapy (RMAT) designation. That’s a big deal because it means they may be able to apply for faster review and approval and get their therapy to more patients faster.

Here’s why that RMAT designation matters.

Over 650,000 Americans suffer from end-stage kidney disease – a life-threatening condition caused by the loss of kidney function. The best available treatment for these patients is a kidney transplant from a genetically matched living donor. However, patients who receive a transplant must take life-long immunosuppressive drugs to prevent their immune system from rejecting the transplanted organ. Over time, these drugs are toxic and can increase a patient’s risk of infection, heart disease, cancer and diabetes.  Despite these drugs, many patients still lose transplanted organs due to rejection.

To tackle this problem Medeor is developing a stem cell-based therapy called MDR-101. This is being tested in a Phase 3 clinical trial and it’s hoped it will eliminate the need for immunosuppressive drugs in genetically matched kidney transplant patients.

The company takes blood-forming stem cells and immune cells from the organ donor and infuses them into the patient receiving the donor’s kidney. Introducing the donor’s immune cells into the patient creates a condition called “mixed chimerism” where immune cells from the patient and the donor are able to co-exist. In this way, the patient’s immune system is able to adapt to and tolerate the donor’s kidney, potentially eliminating the need for the immunosuppressive drugs that are normally necessary to prevent transplant rejection.

So how does getting RMAT designation help that? Well, the FDA created the RMAT program to help speed up the development and review of regenerative medicine therapies that can treat, modify, reverse, or cure a serious condition. If MDR-101shows it is both safe and effective RMAT could help it get faster approval for wider use.

In a news release Giovanni Ferrara, President and CEO of Medeor, welcomed the news.

“This important designation underscores the tremendous unmet medical need for alternatives to today’s immunosuppressive therapies for transplantation. We have the potential to help people live longer, healthier lives without the need for high dose and chronic immunosuppression and we thank the FDA for this designation that will assist us progressing as efficiently as possible toward a commercially available product.”

This is the seventh CIRM-supported project that has been granted RMAT designation. The others are jCyte, Lineage, Humacyte, St. Jude’s/UCSF X-linked SCID, Poseida, Capricor

Meet the people who are changing the future

Kristin MacDonald

Every so often you hear a story and your first reaction is “oh, I have to share this with someone, anyone, everyone.” That’s what happened to me the other day.

I was talking with Kristin MacDonald, an amazing woman, a fierce patient advocate and someone who took part in a CIRM-funded clinical trial to treat retinitis pigmentosa (RP). The disease had destroyed Kristin’s vision and she was hoping the therapy, pioneered by jCyte, would help her. Kristin, being a bit of a pioneer herself, was the first person to test the therapy in the U.S.

Anyway, Kristin was doing a Zoom presentation and wanted to look her best so she asked a friend to come over and do her hair and makeup. The woman she asked, was Rosie Barrero, another patient in that RP clinical trial. Not so very long ago Rosie was legally blind. Now, here she was helping do her friend’s hair and makeup. And doing it beautifully too.

That’s when you know the treatment works. At least for Rosie.

There are many other stories to be heard – from patients and patient advocates, from researchers who develop therapies to the doctors who deliver them. – at our CIRM 2020 Grantee Meeting on next Monday September 14th Tuesday & September 15th.

It’s two full days of presentations and discussions on everything from heart disease and cancer, to COVID-19, Alzheimer’s, Parkinson’s and spina bifida. Here’s a link to the Eventbrite page where you can find out more about the event and also register to be part of it.

Like pretty much everything these days it’s a virtual event so you’ll be able to join in from the comfort of your kitchen, living room, even the backyard.

And it’s free!

You can join us for all two days or just one session on one day. The choice is yours. And feel free to tell your friends or anyone else you think might be interested.

We hope to see you there.

Encouraging news for treatment targeting retinitis pigmentosa

While most people probably wouldn’t put 2020 in their list of favorite years, it’s certainly turning out to be a good one for jCyte. Earlier this year jCyte entered into a partnership with global ophthalmology company Santen Pharmaceuticals worth up to $252 million. Then earlier this week they announced some encouraging results from their Phase 2b clinical trial.

Let’s back up a bit and explain what jCyte does and why it’s so important. They have developed a therapy for retinitis pigmentosa (RP), a rare vision destroying disease that attacks the light sensitive cells at the back of the eye. People are often diagnosed when they are in their teens and most are legally blind by middle age. CIRM has supported this therapy from its early stages into clinical trials.

This latest clinical trial is one of the largest of its kind anywhere in the world. They enrolled 84 patients (although only 74 were included in the final analysis). The patients had vision measuring between 20/80 and 20/800. They were split into three groups: one group was given a sham or placebo treatment; one was given three million human retinal progenitor cells (hRPCs), the kind attacked by the disease; and one was given six million hRPCs.

jCyte CEO Paul Bresge

In an article in Endpoints News, jCyte’s CEO Paul Bresge said there was a very specific reason for this approach. “We did enroll a very wide patient population into our Phase IIb, including patients that had vision anywhere from 20/80 to 20/800, just to learn which patients would potentially be the best responders.”

The results showed that the treatment group experienced improved functional vision and greater clarity of vision compared to the sham or placebo group. Everyone had their vision measured at the start and again 12 months later. For the placebo group the mean change in their ability to read an eye chart (with glasses on) was an improvement of 2.81 letters; for the group that got three million hRPCs it was 2.96 letters, and for the group that got six million hRPCs it was 7.43 letters.

When they looked at a very specific subgroup of patients the improvement was even more dramatic, with the six million cell group experiencing an improvement of 16.27 letters.

Dr. Henry Klassen

Dr. Henry Klassen, one of the founders of jCyte, says the therapy works by preserving the remaining photoreceptors in the eye, and helping them bounce back.

“Typically, people think about the disease as a narrowing of this peripheral vision in a very nice granular way, but that’s actually not what happens. What happens in the disease is that patients lose like islands of vision. So, what we’re doing in our tests is actually measuring […] islands that the patients have at baseline, and then what we’re seeing after treatment is that the islands are expanding. It’s similar to the way that one would track, let’s say a tumor, in oncology of course we’re looking for the opposite effect. We’re looking for the islands of vision to expand.”

One patient did experience some serious side effects in the trial but they responded well to treatment.

The team now plan on carrying out a Phase 3 clinical trial starting next year. They hope that will provide enough evidence showing the treatment is both safe and effective to enable them to get approval from the US Food and Drug Administration to make it available to all who need it.

A clear vision for the future

Dr. Henry Klassen and Dr. Jing Yang, founders of jCyte

When you have worked with a group of people over many years the relationship becomes more than just a business venture, it becomes personal. That’s certainly the case with jCyte, a company founded by Drs. Henry Klassen and Jing Yang, aimed at finding a cure for a rare form of vision loss called retinitis pigmentosa. CIRM has been supporting this work since it’s early days and so on Friday, the news that jCyte has entered into a partnership with global ophthalmology company Santen was definitely a cause for celebration.

The partnership could be worth up to $252 million and includes an immediate payment of $62 million. The agreement also connects jCyte to Santen’s global business and medical network, something that could prove invaluable in bringing their jCell therapy to patients outside the US.

Here in the US, jCyte is getting ready to start a Phase 2 clinical trial – which CIRM is funding – that could prove pivotal in helping it get approval from the US Food and Drug Administration.

As Dr. Maria Millan, CIRM’s President and CEO says, we have been fortunate to watch this company steadily progress from having a promising idea to developing a life-changing therapy.

“This is exciting news for everyone at jCyte. They have worked so hard over many years to develop their therapy and this partnership is a reflection of just how much they have achieved. For us at CIRM it’s particularly encouraging. We have supported this work from its early stages through clinical trials. The people who have benefited from the therapy, people like Rosie Barrero, are not just patients to us, they have become friends. The people who run the company, Dr. Henry Klassen, Dr. Jing Yang and CEO Paul Bresge, are so committed and so passionate about their work that they have overcome many obstacles to bring them here, an RMAT designation from the Food and Drug Administration, and a deal that will help them advance their work even further and faster. That is what CIRM is about, following the science and the mission.”

Paul Bresge, jCyte’s CEO says they couldn’t have done it without CIRM’s early and continued investment.

Paul Bresge, jCyte CEO

“jCyte is extremely grateful to CIRM, which was established to support innovative regenerative medicine programs and research such as ours.  CIRM supported our early preclinical data all the way through our late stage clinical trials.  This critical funding gave us the unique ability and flexibility to put patients first in each and every decision that we made along the way. In addition to the funding, the guidance that we have received from the CIRM team has been invaluable. jCell would not be possible without the early support from CIRM, our team at jCyte, and patients with degenerative retinal diseases are extremely appreciative for your support.”

Here is Rosie Barrero talking about the impact jCell has had on her life and the life of her family.

Stem Cell Agency Approves Funding for Clinical Trials Targeting Parkinson’s Disease and Blindness

The governing Board of the California Institute for Regenerative Medicine (CIRM) yesterday invested $32.92 million to fund the Stem Cell Agency’s first clinical trial in Parkinson’s disease (PD), and to support three clinical trials targeting different forms of vision loss.

This brings the total number of clinical trials funded by CIRM to 60.

The PD trial will be carried out by Dr. Krystof Bankiewicz at Brain Neurotherapy Bio, Inc. He is using a gene therapy approach to promote the production of a protein called GDNF, which is best known for its ability to protect dopaminergic neurons, the kind of cell damaged by Parkinson’s. The approach seeks to increase dopamine production in the brain, alleviating PD symptoms and potentially slowing down the disease progress.

David Higgins, PhD, a CIRM Board member and patient advocate for Parkinson’s says there is a real need for new approaches to treating the disease. In the US alone, approximately 60,000 people are diagnosed with PD each year and it is expected that almost one million people will be living with the disease by 2020.

“Parkinson’s Disease is a serious unmet medical need and, for reasons we don’t fully understand, its prevalence is increasing. There’s always more outstanding research to fund than there is money to fund it. The GDNF approach represents one ‘class’ of potential therapies for Parkinson’s Disease and has the potential to address issues that are even broader than this specific therapy alone.”

The Board also approved funding for two clinical trials targeting retinitis pigmentosa (RP), a blinding eye disease that affects approximately 150,000 individuals in the US and 1.5 million people around the world. It is caused by the destruction of light-sensing cells in the back of the eye known as photoreceptors.  This leads to gradual vision loss and eventually blindness.  There are currently no effective treatments for RP.

Dr. Henry Klassen and his team at jCyte are injecting human retinal progenitor cells (hRPCs), into the vitreous cavity, a gel-filled space located in between the front and back part of the eye. The proposed mechanism of action is that hRPCs secrete neurotrophic factors that preserve, protect and even reactivate the photoreceptors, reversing the course of the disease.

CIRM has supported early development of Dr. Klassen’s approach as well as preclinical studies and two previous clinical trials.  The US Food and Drug Administration (FDA) has granted jCyte Regenerative Medicine Advanced Therapy (RMAT) designation based on the early clinical data for this severe unmet medical need, thus making the program eligible for expedited review and approval.

The other project targeting RP is led by Dr. Clive Svendsen from the Cedars-Sinai Regenerative Medicine Institute. In this approach, human neural progenitor cells (hNPCs) are transplanted to the back of the eye of RP patients. The goal is that the transplanted hNPCs will integrate and create a protective layer of cells that prevent destruction of the adjacent photoreceptors. 

The third trial focused on vision destroying diseases is led by Dr. Sophie Deng at the University of California Los Angeles (UCLA). Dr. Deng’s clinical trial addresses blinding corneal disease by targeting limbal stem cell deficiency (LSCD). Under healthy conditions, limbal stem cells (LSCs) continuously regenerate the cornea, the clear front surface of the eye that refracts light entering the eye and is responsible for the majority of the optical power. Without adequate limbal cells , inflammation, scarring, eye pain, loss of corneal clarity and gradual vision loss can occur. Dr. Deng’s team will expand the patient’s own remaining LSCs for transplantation and will use  novel diagnostic methods to assess the severity of LSCD and patient responses to treatment. This clinical trial builds upon previous CIRM-funded work, which includes early translational and late stage preclinical projects.

“CIRM funds and accelerates promising early stage research, through development and to clinical trials,” says Maria T. Millan, MD, President and CEO of CIRM. “Programs, such as those funded today, that were novel stem cell or gene therapy approaches addressing a small number of patients, often have difficulty attracting early investment and funding. CIRM’s role is to de-risk these novel regenerative medicine approaches that are based on rigorous science and have the potential to address unmet medical needs. By de-risking programs, CIRM has enabled our portfolio programs to gain significant downstream industry funding and partnership.”

CIRM Board also awarded $5.53 million to Dr. Rosa Bacchetta at Stanford to complete work necessary to conduct a clinical trial for IPEX syndrome, a rare disease caused by mutations in the FOXP3 gene. Immune cells called regulatory T Cells normally function to protect tissues from damage but in patients with IPEX syndrome, lack of functional Tregs render the body’s own tissues and organs to autoimmune attack that could be fatal in early childhood.  Current treatment options include a bone marrow transplant which is limited by available donors and graft versus host disease and immune suppressive drugs that are only partially effective. Dr. Rosa Bacchetta and her team at Stanford will use gene therapy to insert a normal version of the FOXP3 gene into the patient’s own T Cells to restore the normal function of regulatory T Cells.

The CIRM Board also approved investing $15.80 million in four awards in the Translational Research program. The goal of this program is to help promising projects complete the testing needed to begin talking to the US Food and Drug Administration (FDA) about holding a clinical trial.

The TRAN1 Awards are summarized in the table below:

ApplicationTitleInstitutionAward Amount
TRAN1 11536Ex Vivo Gene Editing of Human Hematopoietic Stem Cells for the Treatment of X-Linked Hyper IgM Syndrome  UCLA $4,896,628
TRAN1 11555BCMA/CS1 Bispecific CAR-T Cell Therapy to Prevent Antigen Escape in Multiple Myeloma  UCLA $3,176,805
TRAN1 11544 Neural Stem cell-mediated oncolytic immunotherapy for ovarian cancer  City of Hope $2,873,262
TRAN1 11611Development of a human stem cell-derived inhibitory neuron therapeutic for the treatment of chronic focal epilepsyNeurona Therapeutics$4,848,750

The most popular Stem Cellar posts of 2018

The blog

You never know when you write something if people are going to read it. Sometimes you wonder if anyone is going to read it. So, it’s always fun, and educational, to look back at the end of the year and see which pieces got the most eyeballs.

It isn’t always the ones you think will draw the biggest audiences. Sometimes it is diseases that are considered “rare” (those affecting fewer than 200,000 people) that get the most attention.

Maybe it’s because those diseases have such a powerful online community which shares news, any news, about their condition of interest with everyone they know. Whatever the reason, we are always delighted to share encouraging news about research we are funding or encouraging research that someone else is funding.

That was certainly the case with the top two stories this year. Both were related to ALS or Lou Gehrig’s disease.  It’s a particularly nasty condition. People diagnosed with ALS have a life expectancy of just 2 to 5 years. So it’s probably not a big surprise that stories suggesting stem cells could expand that life span got a big reception.

Whatever the reason, we’re just happy to share hopeful news with everyone who comes to our blog.

And so, without further ado, here is the list of the most popular Stem Cellar Blog Posts for 2018.

All of us in the Communications team at CIRM consider it an honor and privilege to be able to work here and to meet many of the people behind these stories; the researchers and the patients and patient advocates. They are an extraordinary group of individuals who help remind us why we do this work and why it is important. We love our work and we hope you enjoy it too. We plan to be every bit as active and engaged in 2019.

The story behind the book about the Stem Cell Agency

DonReed_BookSigning2018-35

Don Reed at his book launch: Photo by Todd Dubnicoff

WHY I WROTE “CALIFORNIA CURES”  By Don C. Reed

It was Wednesday, June 13th, 2018, the launch day for my new book, “CALIFORNIA CURES: How the California Stem Cell Research Program is Fighting Your Incurable Disease!”

As I stood in front of the audience of scientists, CIRM staff members, patient advocates, I thought to myself, “these are the kind of people who built the California stem cell program.” Wheelchair warriors Karen Miner and Susan Rotchy, sitting in the front row, typified the determination and resolve typical of those who fought to get the program off the ground. Now I was about to ask them to do it one more time.

My first book about CIRM was “STEM CELL BATTLES: Proposition 71 and Beyond. It told the story of  how we got started: the initial struggles—and a hopeful look into the future.

Imagine being in a boat on the open sea and there was a patch of green on the horizon. You could be reasonably certain those were the tops of coconut trees, and that there was an island attached—but all you could see was a patch of green.

Today we can see the island. We are not on shore yet, but it is real.

“CALIFORNIA CURES” shows what is real and achieved: the progress the scientists have made– and why we absolutely must continue.

For instance, in the third row were three little girls, their parents and grandparents.

One of them was Evangelina “Evie” Vaccaro, age 5. She was alive today because of CIRM, who had funded the research and the doctor who saved her.

Don Reed and Evie and Alysia

Don Reed, Alysia Vaccaro and daughter Evie: Photo by Yimy Villa

Evie was born with Severe Combined Immunodeficiency (SCID) commonly called the “bubble baby” disease. It meant she could never go outside because her immune system could not protect her.  Her mom and dad had to wear hospital masks to get near her, even just to give her a hug.

But Dr. Donald Kohn of UCLA operated on the tiny girl, taking out some of her bone marrow, repairing the genetic defect that caused SCID, then putting the bone marrow back.

Today, “Evie” glowed with health, and was cheerfully oblivious to the fuss she raised.

I was actually a little intimidated by her, this tiny girl who so embodied the hopes and dreams of millions. What a delight to hear her mother Alysia speak, explaining  how she helped Evie understand her situation:  she had “unicorn blood” which could help other little children feel better too.

This was CIRM in action, fighting to save lives and ease suffering.

If people really knew what is happening at CIRM, they would absolutely have to support it. That’s why I write, to get the message out in bite-size chunks.

You might know the federal statistics—133 million children, women and men with one or more chronic diseases—at a cost of $2.9 trillion dollars last year.

But not enough people know California’s battle to defeat those diseases.

DonReed_BookSigning2018-22

Adrienne Shapiro at the book launch: Photo by Todd Dubnicoff

Champion patient advocate Adrienne Shapiro was with us, sharing a little of the stress a parent feels if her child has sickle cell anemia, and the science which gives us hope:  the CIRM-funded doctor who cured Evie is working on sickle cell now.

Because of CIRM, newly paralyzed people now have a realistic chance to recover function: a stem cell therapy begun long ago (pride compels me to mention it was started by the Roman Reed Spinal Cord Injury Research Act, named after my son), is using stem cells to re-insulate damaged nerves in the spine.  Six people were recently given the stem cell treatment pioneered by Hans Keirstead, (currently running for Congress!)  and all six experienced some level of recovery, in a few cases regaining some use of their arms hands.

Are you old enough to remember the late Annette Funicello and Richard Pryor?  These great entertainers were stricken by multiple sclerosis, a slow paralysis.  A cure did not come in time for them. But the international cooperation between California’s Craig Wallace and Australia’s Claude Bernard may help others: by  re-insulating MS-damaged nerves like what was done with spinal cord injury.

My brother David shattered his leg in a motorcycle accident. He endured multiple operations, had steel rods and plates inserted into his leg. Tomorrow’s accident recovery may be easier.  At Cedars-Sinai, Drs. Dan Gazit and Hyun Bae are working to use stem cells to regrow the needed bone.

My wife suffers arthritis in her knees. Her pain is so great she tries to make only one trip a day down and up the stairs of our home.  The cushion of cartilage in her knees is worn out, so it is bone on bone—but what if that living cushion could be restored? Dr. Denis Evseenko of UCLA is attempting just that.

As I spoke, on the wall behind me was a picture of a beautiful woman, Rosie Barrero, who had been left blind by retinitis pigmentosa. Rosie lost her sight when her twin children were born—and regained it when they were teenagers—seeing them for the first time, thanks to Dr. Henry Klassen, another scientist funded by CIRM.

What about cancer? That miserable condition has killed several of my family, and I was recently diagnosed with prostate cancer myself. I had everything available– surgery, radiation, hormone shots which felt like harpoons—hopefully I am fine, but who knows for sure?

Irv Weissman, the friendly bear genius of Stanford, may have the answer to cancer.  He recognized there were cancer stem cells involved. Nobody believed him for a while, but it is now increasingly accepted that these cancer stem cells have a coating of protein which makes them invisible to the body’s defenses. The Weissman procedure may peel off that “cloak of invisibility” so the immune system can find and kill them all—and thereby cure their owner.

What will happen when CIRM’s funding runs out next year?

If we do nothing, the greatest source of stem cell research funding will be gone. We need to renew CIRM. Patients all around the world are depending on us.

The California stem cell program was begun and led by Robert N. “Bob” Klein. He not only led the campaign, was its chief writer and number one donor, but he was also the first Chair of the Board, serving without pay for the first six years. It was an incredible burden; he worked beyond exhaustion routinely.

Would he be willing to try it again, this time to renew the funding of a successful program? When I asked him, he said:

“If California polls support the continuing efforts of CIRM—then I am fully committed to a 2020 initiative to renew the California Institute for Regenerative Medicine (CIRM).”

Shakespeare said it best in his famous “to be or not to be” speech, asking if it is “nobler …to endure the slings and arrows of outrageous fortune, or to take arms against a sea of troubles—and by opposing, end them”.

Should we passively endure chronic disease and disability—or fight for cures?

California’s answer was the stem cell program CIRM—and continuing CIRM is the reason I wrote this book.

Don C. Reed is the author of “CALIFORNIA CURES: How the California Stem Cell Program is Fighting Your Incurable Disease!”, from World Scientific Publishing, Inc., publisher of the late Professor Stephen Hawking.

For more information, visit the author’s website: www.stemcellbattles.com

 

jCyte Shares Encouraging Update on Clinical Trial for Retinitis Pigmentosa

Stepping out of the darkness into light. That’s how patients are describing their experience after participating in a CIRM-funded clinical trial targeting a rare form of vision loss called retinitis pigmentosa (RP). jCyte, the company conducting the trial, announced 12 month results for its candidate stem cell-based treatment for RP.

RP is a genetic disorder that affects approximately 1 in 40,000 individuals and 1.5 million people globally. It causes the destruction of the light-sensing cells at the back of the eye called photoreceptors. Patients experience symptoms of vision loss starting in their teenage years and eventually become legally blind by middle age. While there is no cure for RP, there is hope that stem cell-based therapies could slow its progression in patients.

Photoreceptors look healthy in a normal retina (left). Cells are damaged in the retina of an RP patient (right). (Source National Eye Institute)

jCyte is one of the leaders in developing cell-based therapies for RP. The company, which was founded by UC Irvine scientists led by Dr. Henry Klassen, is testing a product called jCell, which is composed of pluripotent stem cell-derived progenitor cells that develop into photoreceptors. When transplanted into the back of the eye, they are believed to release growth factors that prevent further damage to the surviving cells in the retina. They also can integrate into the patient’s retina and develop into new photoreceptor cells to improve a patient’s vision.

Positive Results

At the Annual Ophthalmology Innovation Summit in November, jCyte announced results from its Phase 1/2a trial, which was a 12-month study testing two different doses of transplanted cells in 28 patients. The company reported a “favorable safety profile and indications of potential benefit” to patient vision.

The patients received a single injection of cells in their worst eye and their visual acuity (how well they can see) was then compared between the treated and untreated eye. Patients who received the lower dose of 0.5 million cells were able to see one extra letter on an eye chart with their treated eye compared to their untreated eye while patients that received the larger dose of 3 million cells were able to read 9 more letters. Importantly, none of the patients experienced any significant side effects from the treatment.

According to the company’s news release, “patient feedback was particularly encouraging. Many reported improved vision, including increased sensitivity to light, improved color discrimination and reading ability and better mobility. In addition, 22 of the 28 patients have been treated in their other eye as part of a follow-on extension study.”

One of these patients is Rosie Barrero. She spoke to us earlier this year about how the jCyte trial has not only improved her vision but has also given her hope. You can watch her video below.

Next Steps

These results suggest that the jCell therapy is safe (at least at the one year mark) to use in patients and that larger doses of jCell are more effective at improving vision in patients. jCyte CEO, Paul Bresge commented on the trial’s positive results:

Paul Bresge

“We are very encouraged by these results. Currently, there are no effective therapies to offer patients with RP. We are moving forward as quickly as possible to remedy that. The feedback we’ve received from trial participants has been remarkable. We look forward to moving through the regulatory process and bringing this easily-administered potential therapy to patients worldwide.”

Bresge and his company will be able to navigate jCell through the regulatory process more smoothly with the product’s recent Regenerative Medicine Advanced Therapy (RMAT) designation from the US Food and Drug Administration (FDA). The FDA grants RMAT to regenerative medicine therapies for serious diseases that have shown promise in early-stage clinical trials. The designation allows therapies to receive expedited review as they navigate their way towards commercialization.

jCyte is now evaluating the safety and efficacy of jCell in a Phase2b trial in a larger group of up to 85 patients. CIRM is also funding this trial and you can read more about it on our website.


Related Links:

 

CIRM-Funded Clinical Trials Targeting Brain and Eye Disorders

This blog is part of our Month of CIRM series, which features our Agency’s progress towards achieving our mission to accelerate stem cell treatments to patients with unmet medical needs.

 This week, we’re highlighting CIRM-funded clinical trials to address the growing interest in our rapidly expanding clinical portfolio. Our Agency has funded a total of 40 trials since its inception. 23 of these trials were funded after the launch of our Strategic Plan in 2016, bringing us close to the half way point of our goal to fund 50 new clinical trials by 2020.

Today we are featuring CIRM-funded trials in our neurological and eye disorders portfolio.  CIRM has funded a total of nine trials targeting these disease areas, and seven of these trials are currently active. Check out the infographic below for a list of our currently active trials.

For more details about all CIRM-funded clinical trials, visit our clinical trials page and read our clinical trials brochure which provides brief overviews of each trial.

CIRM-funded life-saving stem cell therapy gets nod of approval from FDA

Cured_AR_2016_coverIf you have read our 2016 Annual Report (and if you haven’t you should, it’s brilliant) or just seen the cover you’ll know that it features very prominently a young girl named Evie Padilla Vaccaro.

Evie was born with Severe Combined Immunodeficiency or SCID – also known as “bubble baby disease”; we’ve written about it here. SCID is a rare but deadly immune disorder which leaves children unable to fight off simple infections. Many children with SCID die in the first few years of life.

Fortunately for Evie and her family, Dr. Don Kohn and his team at UCLA, working with a UK-based company called Orchard Therapeutics Ltd., have developed a treatment called OTL-101. This involves taking the patient’s own blood stem cells, genetically modifying them to correct the SCID mutation, and then returning the cells to the patient. Those modified cells create a new blood supply, and repair the child’s immune system.

Evie was treated with OTL-101 when she was a few months old. She is cured. And she isn’t the only one. To date more than 40 children have been treated with this method. All have survived and are doing well.

Orchard Therapeutics

 FDA acknowledgement

Because of that success the US Food and Drug Administration (FDA) has granted OTL-101 Rare Pediatric Disease Designation. This status is given to a treatment that targets a serious or life-threatening disease that affects less than 200,000 people, most of whom are under 18 years of age.

The importance of the Rare Pediatric Disease Designation is that it gives the company certain incentives for the therapy’s development, including priority review by the FDA. That means if it continues to show it is safe and effective it may have a faster route to being made more widely available to children in need.

In a news release Anne Dupraz, PhD, Orchard’s Chief Regulatory Officer, welcomed the decision:

“Together with Orphan Drug and Breakthrough Therapy Designations, this additional designation is another important development step for the OTL-101 clinical program. It reflects the potential of this gene therapy treatment to address the significant unmet medical need of children with ADA-SCID and eligibility for a Pediatric Disease Priority Review voucher at time of approval.”

Creating a trend

This is the second time in less than two weeks that a CIRM-funded therapy has been awarded Rare Pediatric Disease designation. Earlier this month Capricor Therapeutics was given that status for its treatment for Duchenne Muscular Dystrophy.

Two other CIRM-funded clinical trials – Humacyte and jCyte – have been given Regenerative Medicine Advanced Therapy Designation (RMAT) by the FDA. This makes them eligible for earlier and faster interactions with the FDA, and also means they may be able to apply for priority review and faster approval.

All these are encouraging signs for a couple of reasons. It suggests that the therapies are showing real promise in clinical trials. And it shows that the FDA is taking steps to encourage those therapies to advance as quickly – and safely of course – as possible.

Credit where credit is due

In the past we have been actively critical of the FDA’s sluggish pace in moving stem cell therapies out of the lab and into clinical trials where they can be tested in people. So when the FDA does show signs of changing the way it works it’s appropriate that that we are actively supportive.

Getting these designations is, of course, no guarantee the therapies will ultimately prove to be successful. But if they are, creating faster pathways means they can get to patients, the people who really need them, at a much faster pace.