Stem cell stories that caught our eye: sexual identity of organs, upping the game of muscle stem cells, mini guts produce insulin

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

A new sexual identity crisis—in our organs. With the transition from Mr. to Ms. Jenner and other transsexual news this year, it seems inevitable that a research paper would come out suggesting we may all have some mosaic sexual identity. A team in the U.K. found that the stem cells that develop our organs can have varying sexual identities and that can impact the function of the organ.

The organ in question in this case, intestines in fruit flies, is smaller in males than in females. By turning on and off certain genes the researchers at the Medical Research Council’s Clinical Science Centre found that making stem cells in the gut more masculine reduced their ability to multiply and produced smaller intestines. They also found that female intestines were more prone to tumors, just as many diseases are more common in one sex than the other.

In an interview with Medical News Today, Bruno Hudry, the first author on the paper, which is published in Nature, talked about the likelihood that we all have some adult cells in us with genes of the opposite sex.

 “This study shows that there is a wider spectrum than just two sexes. You can be chromosomally, hormonally or phenotypically female but still having some specific adult stem cells (here the stem cells of the intestine) acting like male. So it is hard to say if someone is “really” male or female. Some people are simply a mosaic of male and female cells within a phenotypically ‘male’ or ‘female’ body.”

Hurdry speculated that if the results are duplicated in humans it could provide a window into other sex-linked differences in diseases and could be a matching factor added to the standard protocol for blood and organ donations.

 

Reprogramming stomach to produce insulin.  The stem cells in our gut show an efficiency not seen in most of our organs. They produce a new lining for our stomach and intestine every few days. On the opposite end of the spectrum, the insulin-producing cells in our pancreas rank poorly in self renewal. So, what if you could get some of those vigorous gut stem cells to make insulin producing beta cells? Turns out you can and they can produce enough insulin to allow a diabetic mouse to survive.

mini stomach

A mini-gut with insulin-producing cells (red) and stem cells (green).

A team at the Harvard Stem Cell Institute manipulated three genes known to be associated with beta cell development and tested the ability of many different tissues—from tail to snout—to produce beta cells. A portion of the stomach near the intestine, which naturally produces other hormones, easily reprogrammed into insulin producing cells. More important, if the first batch of those cells was destroyed by the team, the remaining stem cells in the tissue quickly regenerated more beta cells. Since a misbehaving immune system causes type 1 diabetes, this renewal ability could be key to preventing a return of the disease after a transplant of these cells.

In the lab the researchers pushed the tissue from the pylorous region of the stomach to self-organize into mini-stomachs along with the three genetic factors that drive beta cell production.  When transplanted under the skin of mice that had previously had their beta cells destroyed, the mice survived. The genetic manipulations used in this research could not be used in people, but the team is working on a system that could.

 “What is potentially really great about this approach is that one can biopsy from an individual person, grow the cells in vitro and reprogram them to beta cells, and then transplant them to create a patient-specific therapy,” said Qiao Zhou, the senior author. “That’s what we’re working on now. We’re very excited.”

Medicalxpress ran a story about the work published in Cell Stem Cell.

 

muscle stem cells

Muscle stem cells generate new muscle (green) in a mouse.

Better way to build muscle.  Stem cells behave differently depending on what environment they find themselves in, but they are not passive about their environment. They can actively change it. A CIRM-funded team at Sanford Burnham Prebys Medical Discovery Institute (SBP) found that fetal muscle stem cells and adult muscle stem cells make very different changes in the micro-environment around them.

Fetal muscle stem cells become very good at generating large quantities of new muscle, while the adult stem cells take the role of maintaining themselves for emergencies. As a result, when major repair is needed like in muscular dystrophies and aging, they easily get overwhelmed. So the SBP team looked for ways to make the adult stem cells behave more like their fetal predecessors.

 “We found that fetal MuSCs remodel their microenvironment by secreting specific proteins, and then examined whether that same microenvironment can encourage adult MuSCs to more efficiently generate new muscle. It does, which means that how adult MuSCs normally support muscle growth is not an intrinsic characteristic, but can be changed,” said Matthew Tierney, first author of the study in an institute press release distributed by Newswise.

The results point to paths for developing therapies for a number of muscle wasting conditions.

Protective cell therapy could mean insulin independence for diabetic patients

This has already been a productive year for diabetes research. Earlier this month, scientists from UCSF and the Gladstone Institutes successfully made functional human pancreatic beta cells from skin, providing a new and robust method for generating large quantities of cells to replace those lost in patients suffering from type 1 diabetes.

Today marks another breakthrough in the development of stem cell therapies for diabetes. Scientists from MIT and the Harvard Stem Cell Institute published a new method in Nature Medicine that encapsulates and protects stem cell-derived pancreatic beta cells in a way that prevents them from being attacked by the immune system after transplantation.

Protecting transplanted cells from the immune system

Stem cell therapy holds promise for diabetes for a number of reasons. First, scientists now have the ability to generate large numbers of insulin producing pancreatic beta cells from human skin and stem cells. This obviates the need for donor beta cells, which are always in short supply and high demand. Second, there’s the issue of the immune system. Transplanting beta cells from a donor into a patient will trigger an immunological reaction, which can only be abated by a lifetime regimen of immunosuppressive drugs.

One way that scientists have addressed the issue of immune rejection is to transplant stem cell-derived beta cells in a protected capsule. A CIRM-funded company called ViaCyte has developed a medical device that acts like a replacement pancreas but is surgically implanted under the skin. It contains human beta cells derived from embryonic stem cells and has a membrane barrier that allows only certain molecules to pass in and out of the device. This way, the foreign pancreatic cells are shielded from the immune system, but they can still respond to changing blood sugar levels in the patient by secreting insulin into the blood stream.

Another way that scientists trick the immune system in diabetes patients uses a similar strategy but instead of a medical device that protects a large population of cells, they encapsulate individual islets (clusters of beta cells) using biomaterials.

However, previous attempts using a biomaterial called alginate to encapsulate islets caused an immune response in the form of fibrosis, or scar tissue, and cell death. Additionally, transplanted alginate microspheres were only able to achieve glycemic control, or control of blood sugar levels, temporarily in animal models.

In the Nature Medicine study, the scientists developed a new method for beta cell encapsulation where they used a chemically modified version of the alginate microspheres – triazole-thiomorpholine dioxide (TMTD) – that didn’t cause an immune reaction and was able to maintain glycemic control in mice that had diabetes.

New protective method makes diabetic mice insulin independent

The scientists tested the conventional alginate microspheres and the modified TMTD-alginate microspheres containing embryonic stem cell-derived human beta islets in diabetic mice.

Encapsulated beta islets were transplanted into diabetic mice. (Nature Medicine)

Encapsulated beta islets were transplanted into diabetic mice. (Nature Medicine)

They found that the conventional smaller alginate microspheres caused fibrosis while larger TMTD-alginate microspheres did not. They observed that the modified TMTD-alginate microspheres were able to achieve glycemic control for over 70 days after transplantation while conventional microspheres didn’t perform as well.

The scientists also looked at the immune response to both types of alginate spheres. They saw lower numbers of immune cells and less fibrosis surrounding the transplanted TMTD microspheres compared to the conventional microspheres.

The final studies were the icing on the cake. The asked whether the modified TMTD microspheres were able to maintain long-term glycemic control or insulin independence, which would mean sustaining blood glucose levels in diabetic mice for over 100 days. They studied diabetic mice that received TMTD microspheres for 174 days. At 150 days, they performed a glucose test and saw that the diabetic mice were just as good at regulating glucose levels as normal mice. Furthermore, after 6 months, these mice showed no build up of fibrotic tissue, indicating that the modified microspheres weren’t causing an immune response and these mice didn’t need immunosuppressive drugs.

What the experts had to say…

This study was picked up by STATnews, which also mentioned another related study published in Nature Biotechnology that tested various alginate derivatives in rodent and monkey models of diabetes.

Julia Greenstein, vice president of discovery research at JDRF, discussed the implications of both studies with STATnews:

“This is really the first demonstration of the ability of these novel materials in combination with a stem-cell derived beta cell to reverse diabetes in an animal model. Our goal is to bring that kind of biological cure across the spectrum of type 1 diabetes.”

First author on both studies, Arturo Vegas, also gave his thoughts and discussed future applications:

Arturo Vegas

Arturo Vegas

“From very early on, we were getting great success. Everything kind of fell into place. You saw less foreign body response. The human beta cells survived exquisitely well. I think we’ve advanced the ball pretty far, almost as far you could get in an academic environment. The talk is shifting toward doing something clinically.”

According to STATnews, Vegas and his team are working on tests now in monkey models. “Vegas said that if the primate studies are successful, the next step will be developing a therapy to be used in people.”


Related Links:

Type 1 Diabetes Trial Explained Whiteboard Video Style

There’s a saying, a picture is worth a thousand words. With complicated science however, pictures don’t always do these topics justice. Here’s where videos come to the rescue.

Florie Mar, founder of Youreka Science.

Florie Mar, founder of Youreka Science.

Today’s topic is type 1 diabetes and a CIRM-funded clinical trial headed by the San Diego company ViaCyte hoping to develop a cure for patients with this disease. Instead of writing an entire blog about the latest on this clinical trial, we are featuring an excellent video by Youreka Science. This nonprofit organization is the brainchild of former University of California, San Francisco graduate student Florie Mar who has a passion to bring scientific concepts to life to reach both students and the general public.

Youreka’s style uses whiteboard videos to explain disease and basic science research with drawings, words, and lay person-friendly narrative. This particular video, “Progress and Promise of Stem Cell Research: Type 1 Diabetes” was developed in collaboration with Americans for Cures and explains how CIRM-funded stem cell research is “leading to groundbreaking advances in diabetes.”

We are also excited about this ViaCyte trial as it’s being conducted in one of the CIRM Alpha Stem Cell Clinics located at the University of California, San Diego. The goal of the Alpha Clinics is to accelerate the development and delivery of stem cell therapies to patients by providing stem-cell focused clinics for conducting high quality trials.

In brief, the video explains ViaCyte’s stem cell derived therapy that replaces the insulin-producing cells that are lost in type 1 diabetes patients. For more details, check out the video!

 

And to hear from Viacyte’s chief scientific officer as well as two people living with type 1 diabetes, check out a CIRM video we produced a few years ago.


Related Links:

Stem cell stories that caught our eye: new ways to reprogram, shifting attitudes on tissue donation, and hockey legend’s miracle questioned

Here are some stem cell stories that caught our eye this past week. Some are groundbreaking science, others are of personal interest to us, and still others are just fun.

Insulin-producing cells produced from skin. Starting with human skin cells a team at the University of Iowa has created iPS-type stem cells through genetic reprogramming and matured those stem cells into insulin-producing cells that successfully brought blood-sugar levels closer to normal when transplanted in mice.

University of Iowa researchers reprogrammed human skin cells to create iPS cells, which were then differentiated in a stepwise fashion to create insulin-producing cells. When these cells were transplanted into diabetic mice, the cells secreted insulin and reduced the blood sugar levels of the mice to normal or near-normal levels. The image shows the insulin-producing cells (right) and precursor cells (left). [Credit: University of Iowa]

University of Iowa researchers reprogrammed human skin cells to create iPS cells, which were then differentiated in a stepwise fashion to create insulin-producing cells. When these cells were transplanted into diabetic mice, the cells secreted insulin and reduced the blood sugar levels of the mice to normal or near-normal levels. The image shows the insulin-producing cells (right) and precursor cells (left).
[Credit: University of Iowa]

The cells did not completely restore blood-sugar levels to normal, but did point to the possibility of achieving that goal in the future, something the team leader Nicholas Zavazava noted in an article in the Des Moines Register, calling the work an “encouraging first step” toward a potential cure for diabetes.

The Register discussed the possibility of making personalized cells that match the genetics of the patient and avoiding the need for immune suppression. This has long been a goal with iPS cells, but increasingly the research community has turned to looking for options that would avoid immune rejection with donor cells that could be off-the-shelf and less expensive than making new cells for each patient.

Heart cells from reprogramming work in mice. Like several other teams, a group in Japan created beating heart cells from iPS-type stem cells. But they went the additional step of growing them into sheets of heart muscle that when transplanted into mice integrated into the animals own heart and beat to the same rhythm.

The team published the work in Cell Transplantation and the news agency AlianzaNews ran a story noting that it has previously been unclear if these cells would get in sync with the host heart muscle. The result provides hope this could be a route to repair hearts damaged by heart attack.

Patient attitudes on donating tissue. A University of Michigan study suggests most folks don’t care how you use body tissue they donate for research if you ask them about research generically. But their attitudes change when you ask about specific research, with positive responses increasing for only one type of research: stem cell research.

On the generic question, 69 percent said go for it, but when you mentioned the possibility of abortion research more than half said no and if told the cells might lead to commercial products 45 percent said nix. The team published their work in the Journal of the American Medical Association and HealthCanal picked up the university’s press release that quoted the lead researcher, Tom Tomlinson, on why paying attention to donor preference is so critical:

“Biobanks are becoming more and more important to health research, so it’s important to understand these concerns and how transparent these facilities need to be in the research they support.”

CIRM has begun building a bank of iPS-type stem cells made from tissue donated by people with one of 11 diseases. We went through a very detailed process to develop uniform informed consent forms to make sure the donors for our cell bank knew exactly how their cells could be used. Read more about the consent process here.

Mainstream media start to question hockey legend’s miracle. Finally some healthy skepticism has arrived. Hockey legend Gordie Howe’s recovery from a pair of strokes just before the holidays was treated by the general media as a true Christmas miracle. The scientific press tried to layer the coverage with some questions of what we don’t know about his case but not the mainstream media. The one exception I saw was Brad Fikes in the San Diego Union Tribune who had to rely on a couple of scientists who were openly speaking out at the time. We wrote about their concerns then as well.

Now two major outlets have raised questions in long pieces back-to-back yesterday and this morning. The Star in hockey-crazed Canada wrote the first piece and New York Magazine wrote today’s. Both raise serious questions about whether stem cells could have been the cause of Howe’s recovery and are valuable additions to the coverage.