Remembering Eli Broad, philanthropist and stem cell champion

Eli Broad, Photo by Nancy Pastor

The world of stem cell research lost a good friend this weekend. Eli Broad, a generous supporter of science, education and the arts, passed away at the age of 87.

Eli came from humble origins, born in the Bronx to an immigrant father who worked as a house painter and a mother who was a seamstress. He went to Michigan State University, working a number of jobs to pay his way, including selling women’s shoes, working as a door-to-door salesman for garbage disposal units, and delivering rolls of film to be developed. He graduated in three years and then became the youngest person ever to pass the CPA exam in Michigan.

He started out as an accountant but quickly switched to housing and development and was a millionaire by the time he was 30. As his wealth grew so did his interest in using that money to support causes dear to him and his wife Edythe.

With the passage of Proposition 71 in 2004 Broad put up money to help create the Broad Stem Cell Centers at UCLA, UC San Francisco and the University of Southern California. Those three institutions became powerhouses in stem cell research and the work they do is a lasting legacy to the generosity of the Broads.

Rosa Dilani, histology core manager at the Eli and Edythe Broad CIRM Center, explains the lab’s function to Eli Broad after the Oct. 29 ribbon cutting of the new building. In the background are U.S. Rep. Lucille Roybal-Allard (in purple) and Bob Klein in gray suit.

“Science has lost one of its greatest philanthropic supporters,” says Jonathan Thomas, PhD, JD, Chair of the CIRM Board. ” Eli and Edye Broad set the table for decades of transformative work in stem cell and gene therapy through their enthusiastic support for Proposition 71 and funding at a critical time in the early days of regenerative medicine. Their recent additional generous contributions to USC, UCLA and UCSF helped to further advance that work.  Eli and Edye understood the critical role of science in making the world a better place.  Through these gifts and their enabling support of the Broad Institute with Harvard and MIT, they have left a lasting legacy in the advancement of medicine that cannot be overstated.”

Through the Broad Foundation he helped fund groundbreaking work not just in science but also education and the arts. Gerun Riley, President of the Broad Foundation says Eli was always interested in improving the lives of others.

“As a businessman Eli saw around corners, as a philanthropist he saw the problems in the world and tried to fix them, as a citizen he saw the possibility in our shared community, and as a husband, father, mentor and friend he saw the potential in each of us.”

Eli and Edythe Broad

Breakthrough for type 1 diabetes: scientist discovers how to grow insulin-producing cells

Matthias Hebrok, PhD, senior author of new study that transformed human stem cells into mature, insulin-producing cells. Photo courtesy of UCSF.

More often than not, people don’t really think about their blood sugar levels before sitting down to enjoy a delicious meal, partake in a tasty dessert, or go out for a bicycle ride. But for type 1 diabetes (T1D) patients, every minute and every action revolves around the readout from a glucose meter, a device used to measure blood sugar levels.

Normally, the pancreas contains beta cells that produce insulin in order to maintain blood sugar levels in the normal range. Unfortunately, those with T1D have an immune system that destroys their own beta cells, thereby decreasing or preventing the production of insulin and in turn the regulation of blood sugar levels. Chronic spikes in blood sugar levels can lead to blindness, nerve damage, kidney failure, heart disease, stroke, and even death.

Those with T1D manage their condition by injecting themselves with insulin anywhere from two to four times a day. A light workout, slight change in diet, or even an exciting event can have a serious impact that requires a glucose meter check and an insulin injection.

There are clinical trials involving transplants of pancreatic “islets”, clusters of cells containing healthy beta cells, but these rely on pancreases from deceased donors and taking immune suppressing drugs for life.

But what if there was a way to produce healthy beta cells in a lab without the need of a transplant?

Dr. Matthias Hebrok, director of the UCSF diabetes center, and Dr. Gopika Nair, postdoctoral fellow, have discovered how to transform human stem cells into healthy, insulin producing beta cells.

In a news release written by Dr. Nicholas Weiler of UCSF, Dr. Hebrok is quoted as saying “We can now generate insulin-producing cells that look and act a lot like the pancreatic beta cells you and I have in our bodies. This is a critical step towards our goal of creating cells that could be transplanted into patients with diabetes.”

For the longest time, scientists could only produce cells at an immature stage that were unable to respond to blood sugar levels and secrete insulin properly. Dr. Hebrok and Dr. Nair discovered that mimicking the “islet” formation of cells in the pancreas helped the cells mature. These cells were then transplanted into mice and found that they were fully functional, producing insulin and responding to changes blood sugar levels.

Dr. Hebrok’s team is already in collaboration with various colleagues to make these cells transplantable into patients.

Gopika Nair, PhD, postdoctoral fellow that led the study for transforming human stem cells into mature, insulin-producing cells. Photo courtesy of UCSF.

Dr. Nair in the article is also quoted as saying “Current therapeutics like insulin injections only treat the symptoms of the disease. Our work points to several exciting avenues to finally finding a cure.”

“We’re finally able to move forward on a number of different fronts that were previously closed to us,” Hebrok added. “The possibilities seem endless.” 

Dr. Hebrok, who is also a member of the CIRM funded UCSF Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, was senior author of the new study, which was published February 1, 2019 in Nature Cell Biology.

CIRM has funded three separate human clinical trials for T1D that total approximately $37.8 million in awards. Two of these trials are being conducted by ViaCyte, Inc. and the third trial is being conducted by Caladrius Biosciences.